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Abstract
Personalizing large language models (LLMs)001
is essential for delivering tailored interactions002
that improve user experience. Many exist-003
ing personalization methods require fine-tuning004
LLMs for each user, rendering them pro-005
hibitively expensive for widespread adoption.006
Although retrieval-based approaches offer a007
more compute-efficient alternative, they still de-008
pend on large, high-quality datasets that are not009
consistently available for all users. To address010
this challenge, we propose CHAMELEON, a011
scalable and efficient personalization approach012
that uses (1) self-generated personal prefer-013
ence data and (2) representation editing to014
enable quick and cost-effective personaliza-015
tion. Our experiments on various tasks, in-016
cluding those from the LaMP personalization017
benchmark, show that CHAMELEON efficiently018
adapts models to personal preferences, improv-019
ing instruction-tuned models and outperforms020
two personalization baselines by an average of021
40% across two model architectures.022

1 Introduction023

Large language models (LLMs) have transformed024

natural language processing (NLP), achieving ex-025

cellent performance across a wide range of tasks.026

Their use has already expanded into diverse do-027

mains and user bases (Gururangan et al., 2020; Shi028

et al., 2024; Xu et al., 2024a,b). This has motivated029

the need for personalization, i.e. tailoring these030

models to individual user preferences and specific031

contexts (Kirk et al., 2023).032

Current personalization methods are often im-033

practical for large-scale deployment. Fine-tuning034

approaches (Li et al., 2024b; Tan et al., 2024;035

Clarke et al., 2024) are resource-intensive, mak-036

ing it prohibitively expensive to customize models037

for each individual user. In contrast, retrieval-based038

methods (Salemi et al., 2024; Di Palma, 2023; Fan039

et al., 2024) offer greater computational efficiency040

but suffer from a significant drawback: they rely on041

large high-quality datasets that are not consistently 042

available for all users. These limitations impede 043

the effective scaling of personalization, especially 044

given the diverse and rapidly evolving nature of 045

user preferences. 046

To achieve scalable personalization, we argue 047

that two essential conditions must be met: (1) data 048

efficiency, which enables effective personalization 049

with minimal user interaction, and (2) compute effi- 050

ciency, allowing for deployment across a large user 051

base. We propose CHAMELEON, a new approach 052

that fulfills both requirements by using synthetic, 053

self-generated data to capture user preferences and 054

uses representation editing to tailor its behavior to 055

each user’s unique preferences (Adila et al., 2024). 056

For each user, we begin with a small amount 057

of historical data—sometimes as little as a single 058

sample. Using this data, we prompt the LLM to 059

generate two characteristic descriptions: one that 060

reflects the user’s personal preferences based on 061

their history and another that represents a contrast- 062

ing or non-personalized profile (e.g., "funny" ver- 063

sus "formal"). From these descriptions, we create 064

synthetic user preference data. We then identify 065

two distinct embedding spaces—personalized and 066

non-personalized—derived from the synthetic pref- 067

erence data. Finally, we edit the LLM’s embed- 068

dings to enhance the influence of the personalized 069

subspace while diminishing the influence of the 070

non-personalized subspace. 071

With this data- and compute-efficient approach, 072

we improve instruction-tuned models and two LLM 073

personalization baselines by an average of 40% in 074

the LaMP personalization benchmark (Salemi et al., 075

2024). In summary, our contributions are: 076

1. We introduce CHAMELEON, an LLM per- 077

sonalization framework that leverages self- 078

generated user preference data and embed- 079

ding editing techniques, providing scalable, 080

user-tailored personalization that is nearly 081
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cost-free.082

2. On extensive evaluation using the LaMP083

benchmark (Salemi et al., 2024), we show084

that CHAMELEON improves upon instruction-085

tuned models and two LLM personalization086

benchmarks by an average of 40% on two087

model architectures.088

3. CHAMELEON can effectively personalize for089

new, unseen users without user history by090

leveraging profiles from other users with simi-091

lar characteristics and preferences.092

2 Related Work093

Our work seeks to address the personalization prob-094

lem for LLMs using representation editing as an095

efficient technique to align models with user pref-096

erences. We give a brief overview of related areas.097

Personalized LLMs. Unlike general LLMs that098

produce uniform responses for all users, personal-099

ized LLMs adapt to the specific linguistic and com-100

munication preferences of individual users (Clarke101

et al., 2024). Fine-tuning is a common method for102

achieving this, by training models on user-specific103

or task-specific data to personalize their behavior104

(Woźniak et al., 2024). Approaches like P-RLHF105

(Li et al., 2024b), Persona-Plug (Liu et al., 2024a),106

and ALOE (Wu et al., 2024) exemplify this strategy.107

However, fine-tuning is resource-intensive, making108

it impractical to personalize models for individ-109

ual users at scale. Parameter-efficient fine-tuning110

(PEFT) (Tan et al., 2024) reduces the computational111

burden but still requires large amounts of user data,112

which is often scarce and difficult to obtain in user113

personalization task (Zollo et al., 2024).114

Retrieval-based methods personalize model out-115

puts by incorporating user-specific information re-116

trieved at inference time (Dai et al., 2023; Kang117

et al., 2023; Liu et al., 2023; Wang et al., 2023;118

Zhiyuli et al., 2023; Salemi et al., 2024). While119

these methods avoid the need for tuning, they strug-120

gle with LLMs’ limited context lengths, especially121

when dealing with long user histories. Although122

long-context models (Dubey et al., 2024; Reid et al.,123

2024; Liu et al., 2024b) allow for processing larger124

user histories, this incurs a high cost as many mod-125

els are charged per token. Attempts to address126

this issue by summarizing retrieved information127

have been made (Richardson et al., 2023; Liu et al.,128

2024c). However, these approaches are vulnera-129

ble to distractions from irrelevant information (Shi130

et al., 2023), particularly when user behavior or 131

preferences shift (Carroll et al., 2024; Franklin 132

et al., 2022). 133

The closest work to ours is LLM-REC (Lyu et al., 134

2024), a prompt-based approach that personalizes 135

LLMs using summaries of selected top user his- 136

tory data. Our method takes this a step further 137

by generating self-preference data, identifying em- 138

bedding spaces that capture personalized versus 139

non-personalized preferences, and performing per- 140

sonalization through representation editing. This 141

enables a more data- and compute-efficient person- 142

alization process, making it possible to adapt mod- 143

els at scale to evolving user preferences quickly. 144

Our approach represents a significant step toward 145

scalable, real-time personalization that caters to 146

dynamic user preference data. 147

Representation Editing for Personalization. 148

Representation editing has become an important 149

technique for model alignment, involving the direct 150

manipulation of a model’s latent representations to 151

improve its performance and align it with desired 152

attributes (Wang et al., 2024a; Kong et al., 2024). 153

For example, Han et al. (2024) demonstrated that 154

steering LLM text embeddings can guide model 155

output styles. Similarly, (Li et al., 2024a; Han et al., 156

2023a) show that adjusting embeddings during in- 157

ference can enhance specific attributes, such as 158

honesty or truthfulness, in the generated outputs. 159

Liang et al. (2024) found that representation edit- 160

ing can control aspects of text generation, such 161

as safety, sentiment, thematic consistency, and lin- 162

guistic style. These findings highlight the potential 163

of using representation editing to guide models for 164

personalization tasks. For visual generation models 165

like Stable Diffusion, embedding-based personal- 166

ization has long been recognized as an established 167

technique (Han et al., 2023b; Arar et al., 2024; 168

Alaluf et al., 2023; Yang et al., 2024). 169

Despite the growing interest in representation 170

editing, little research has explored its application 171

for personalizing LLMs, as proposed in our work. 172

The most closely related study is Adila et al. (2024), 173

where the authors use embedding editing for gen- 174

eral, rather than personalized, alignment to broad 175

human preferences, relying on self-generated syn- 176

thetic data. Our approach advances this notion 177

by introducing a tailored mechanism that generates 178

personalized synthetic data for each user and adapts 179

embedding editing techniques for both individual 180

and group-based personalization. 181
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Figure 1: CHAMELEON identifies two separate subspaces, one personalized and one non-personalized, from self-
generated user characteristic insights. Based on these subspaces, we modify the LLM embeddings during inference.

3 CHAMELEON: Personalization through182

Representation Editing183

We present CHAMELEON, an almost cost-free184

alignment personalization framework with repre-185

sentation editing using self-generated synthetic186

user preference data. Figure 1 illustrates our187

technique. We achieve personalization with two188

stages: (1) self-generating user preference data189

(Section 3.1), and (2) representation editing using190

the self-generated data (Section 3.2). Additionally,191

we extend CHAMELEON to support scalable user192

groups, enabling efficient alignment at a group193

level (Section 3.3).194

3.1 Self-generated Preference Data195

Our method for generating self-preference data196

uses generic, non-personalized LLMs to identify197

user-specific characteristics and preferences from198

the available user history. Using these identified199

characteristics, we prompt the model to generate200

tailored responses for each user. This process con-201

sists of three key steps: (1) selecting relevant user202

history, (2) generating insights from the selected203

history, and (3) producing synthetic user preference204

data guided by these insights.205

User History Selection. User’s historical behav-206

ior usually contains important information regard-207

ing their characteristics, linguistic patterns, and208

preferred interactions. However, not all histori-209

cal behaviors serve as reliable indicators of user210

preferences. Adapting the model using redundant211

and generic user behavior may not result in high-212

quality personalized LLMs. Selecting and filtering213

for representative user historical behavior is thus 214

important. Although recent studies showed suc- 215

cess in using retrieval-based re-rankers (Zhuang 216

et al., 2024) and encoder-based user history selec- 217

tion (Liu et al., 2024a), they can struggle when user 218

preferences shift rapidly or when there’s limited 219

historical data. To address this, we focus on a more 220

lightweight and adaptable approach to user history 221

selection. 222

Since our approach relies on embedding edit- 223

ing to adapt the model, we need to identify user- 224

representative historical data. The first step is to 225

define what makes this data "representative." We 226

leverage sentence embeddings for their strong abil- 227

ity to capture both the meaning and context of 228

text (Reimers and Gurevych, 2019). Our goal is 229

to find the most informative and relevant embed- 230

ding pieces that reflect key user preferences. A 231

lightweight approach to find such data is to per- 232

form principal component analysis (PCA) on the 233

embeddings (Gewers et al., 2021). Specifically, for 234

each user u, given a set of user historyHu = {hiu} 235

where each hiu represents an individual user history 236

sample with index i, we have 237

eiu = SentenceEmbedder(hiu). (1) 238

Then, we have that Wu are the top k principal 239

components of Eu = [e1u, e
2
u, . . . , e

N
u ]⊤ and the 240

projection of each embedding is ziu = eiuWu. We 241

next find the top k history data embeddings: 242

Ek
u = arg top-k

i∈[1,...,N ]

∥∥ziu∥∥ , (2) 243

and get top k history data Hk
u = {hiu : i ∈ Ek

u}. 244
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Figure 2: Self-generated user preference data: we use the generated conclusion of user characteristics to guide the
personal answer generation.

Insight Generation. We query an instruction-245

tuned general-purpose LM to analyze and infer246

characteristics specific to individual users. For247

each user u, given the selected set of user history248

Hk
u from the previous step, we query the LM (de-249

noted as ω) and generate two distinct styles of re-250

sponses: one as a personalized agent (CP ) and251

the other as a non-personalized/neutral agent (CN ).252

The personalized agent (CP ) draws on the user’s253

historical data Hk
u , concluding insights about the254

user’s preferences, behaviors, and style. The neu-255

tral agent (CN ) is asked to give characteristics of256

impersonal and general responses. It represents the257

standard behavior of the model when user person-258

alization is absent. Then, for each user u, we have259

an personalized-neutral insights pair (cPu , c
N
u ).260

Generating Synthetic User Preference Data261

Once the insights are generated, we use the insight262

pairs as prompt guidance to generate synthetic user263

preference data. For each user u and each user264

query qu, given the pre-selected history set Hu265

and insight pair (ci,Pu , ci,Nu ), we have our general-266

purpose LM (ω) separately generate personalized267

and neutral preference outputs (ŷi,Pu , ŷi,Nu ) to query268

qiu conditioned on (ci,Pu , ci,Nu ) respectively. We269

then concatenate the outputs (ŷi,Pu , ŷi,Nu ) with user270

historyHu and obtain the self-generated preference271

pair (pi,Pu , pi,Nu ) for each user query qiu. By apply-272

ing this procedure to all user queries, we obtain273

self-generated preference data pairs (PP
u , PN

u ). 274

Note that we do not apply any prompt tuning; 275

rather, we use a predefined set of prompt templates 276

and a frozen LLM for all generations. Figure 2 277

illustrates the full process, with prompting details 278

in Appendix A.3. 279

3.2 Representation Editing 280

Next, using the self-generated user preference 281

data, we align the model with users’ preferences 282

with a technique inspired by ALIGNEZ (Adila 283

et al., 2024). We first identify two subspaces in 284

the model’s embedding space (denoted as vector 285

θ ∈ Rd in LM ω’s latent space) that correspond 286

with the users’ preferences. We use singular value 287

decomposition (SVD) on the preference data em- 288

beddings to capture directions of the personalized 289

embeddings θPl,u. Next, we employ CCS-based 290

identification (Burns et al., 2023) to find the hy- 291

perplane that best separates the non-personalized 292

embeddings from the personalized ones and denote 293

the directions of the hyperplane as θNl,u. A detailed 294

explanation is provided in Appendix A.4. 295

With the personalized and non-personalized sub- 296

spaces θP and θN , we perform embedding editing 297

on the MLP outputs of the most impactful decoder 298

layers (i.e. layers that have lowest average CSS 299

loss) during the inference phase to adapt the LLM 300

to users’ preferences. More concretely, given xl, 301

the output of the MLP of layer l ∈ L, where L is 302
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the set of layers with lowest average CSS loss, we303

strengthen the personalized direction by304

x̂l,u ← xl +
⟨xl, θPl,u⟩
⟨θPl,u, θPl,u⟩

θPl,u305

and remove the non-personalized direction by306

x̂l,u ← x̂l,u −
⟨x̂l,u, θNl,u⟩
⟨θNl,u, θNl,u⟩

θNl,u.307

These edits are performed for each user query.308

3.3 Group-scale Personalization309

Individually aligning the model for multiple users310

is inefficient when scaling to a large user base311

(Dai et al., 2024). To overcome this, we extend312

CHAMELEON to group-scale alignment. Instead313

of aligning for each user separately, we combine314

the history data of all users into a single group and315

perform collective alignment. Specifically, we ag-316

gregate the synthetic self-preference data for all317

users into one set, (PP , PN ) = {(pi,Pu , pi,Nu ) ∈318

(PP
u , PN

u )|u ∈ U}, where U is the set of users in319

the group. (PP , PN ) is then used to find direction320

vectors for representation editing.321

This approach enables efficient personalization322

by processing all users simultaneously, leading to323

faster alignment. In Section 4.4, we show that324

group-scale personalization outperforms the single-325

user setting. Furthermore, this method allows us326

to leverage data from other users for those with no327

available history, enabling personalization for new328

or unseen users (see Experiment 4.2).329

4 Experiments330

We begin by detailing our experimental setup in331

Section 4.1, followed by experiments to validate332

the following key claims about CHAMELEON:333

• Aligns LLMs to user-specific preferences (Sec-334

tion 4.2),335

• Generalizes to unseen users (Section 4.3),336

• Group-scale personalization improves perfor-337

mance (Section 4.4),338

• Outperforms compute extensive methods like339

DPO in time-constrained scenarios (Section 4.5).340

In Section 4.6, we perform ablation study to under-341

stand the effect of the number of user history data342

to CHAMELEON performance.343

4.1 Experimental Setup 344

Datasets and Tasks. We evaluate CHAMELEON 345

using the LaMP language model personalization 346

benchmark (Salemi et al., 2024). Our evaluation 347

focuses on three specific personalization tasks: (1) 348

Personalized Movie Tagging (LaMP 2), (2) Person- 349

alized Product Rating (LaMP 3), and (3) Person- 350

alized Tweet Paraphrasing (LaMP 7). We adhered 351

to the user-based data split provided by the LaMP 352

benchmark, using the default training and test splits. 353

Additional details about the datasets and tasks can 354

be found in Appendix A.2. 355

Evaluation Metrics. We use the evaluation met- 356

rics established by the LaMP benchmark for each 357

task. For Personalized Movie Tagging (LaMP 2), 358

we measure Accuracy (Acc.) and F-1 Score (F- 359

1). For Personalized Product Rating (LaMP 3), 360

we assess performance using Mean Absolute Er- 361

ror (MAE) and Root Mean Squared Error (RMSE). 362

For Personalized Tweet Paraphrasing (LaMP 7), we 363

apply the ROUGE-1 (R-1) and ROUGE-L (R-L) 364

metrics. 365

Baseline 1: Non-personalized Instruction-tuned 366

Models. We evaluate CHAMELEON against two 367

general purpose instruction-tuned models: Mistral- 368

7B-v0.3-Instruct (Jiang et al., 2023) and Flan- 369

T5 XXL (Chung et al., 2022). Both models are 370

assessed using the same set of user queries as 371

CHAMELEON, following the same prompt format 372

and using the same pre-selected user history pro- 373

file—excluding any insights. Additional prompt 374

details can be found in Appendix A.3. 375

Baseline 2: Personalization Methods. We also 376

compare CHAMELEON against two personalization 377

techniques, namely LLM-REC (Lyu et al., 2024), 378

a prompting-engineering personalization method, 379

and ALOE (Wu et al., 2024), a supervised Fine- 380

tuning (SFT) personalization method. 381

Group Personalization Setup. To implement 382

group-scale personalization (Section 3.3), we ran- 383

domly select 100 users from the training split of 384

the LaMP benchmark. Using PCA-based history 385

selection (Section 3.1), we choose up to 10 user his- 386

tory entries per profile. For each user, we generate 387

personalized and neutral insight pairs along with 388

self-generated preference data. Any data where 389

the personalized and non-personalized outputs are 390

identical is discarded. We then combine the self- 391

generated preference data for all users, perform 392
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Models→ Mistral Instruct Flan T5 XXL

Dataset Metric
Instruct LLM

ALOE CHAMELEON
Instruct LLM

ALOE CHAMELEON
Model -REC Model -REC

Acc. ↑ 0.198 0.262 0.307 0.396 0.238 0.214 0.333 0.420
LaMP2

F-1 ↑ 0.236 0.309 0.220 0.349 0.171 0.146 0.255 0.311
MAE ↓ 0.497 0.484 0.423 0.407 0.456 0.798 0.427 0.400

LaMP3
RMSE ↓ 0.944 0.976 0.888 0.815 0.818 1.439 0.786 0.714

R-1 ↑ 0.354 0.183 0.362 0.381 0.333 0.225 0.376 0.429
LaMP7

R-L ↑ 0.295 0.144 0.313 0.334 0.292 0.196 0.331 0.385

Table 1: CHAMELEON outperforms all baselines in personalization for users with history. Best performance is
highlighted in bold. Metrics where higher values indicate better performance are shaded in blue cells , while
metrics where lower values are preferable are marked with green cells .

Models→ Mistral Instruct Flan T5 XXL
Dataset Metric ALOE CHAMELEON ALOE CHAMELEON

Acc. ↑ 0.227 0.363 0.109 0.390
LaMP2

F-1 ↑ 0.177 0.338 0.040 0.304
MAE ↓ 0.522 0.442 0.544 0.413

LaMP3
RMSE ↓ 0.906 0.903 1.030 0.839

R-1 ↑ 0.185 0.377 0.251 0.420
LaMP7

R-L ↑ 0.155 0.331 0.206 0.373

Table 2: CHAMELEON performance compared ALOE on new unseen users.

group-scale alignment, and evaluate the personal-393

ized model on unseen user queries from the LaMP394

test split (Section 4.3). This process is repeated for395

different random sets of 100 users, and we report396

the average performance.397

4.2 Aligns LLMs to user-specific preferences398

Setup. We compare CHAMELEON with the pre-399

viously mentioned baselines. In the self-insight400

generation process, user history data is fed directly401

to the models using simple prompts (see Appendix402

A.3), without access to human annotations.403

Results. As shown in Table 1, CHAMELEON404

consistently outperforms all baselines. Remark-405

ably, these improvements are achieved with min-406

imal user history data and without any training407

and fine-tuning, surpassing an SFT-based method408

(ALOE). These results validate our claim that409

CHAMELEON can effectively align LLMs to in-410

dividual user preferences.411

4.3 Generalizes to unseen users412

Setup. We also assess CHAMELEON’s ability to413

personalize for new, unseen users who have no414

prior history. In this evaluation, we run both415

CHAMELEON and ALOE on the LaMP training416

split and evaluate their performance on test sam-417

ples from users not included in the training data. 418

This experimental setup is not applicable to instruct 419

models and LLM-REC, as both of these methods 420

use prompt-based personalization and do not dif- 421

ferentiate between seen and unseen users. 422

Results. Table 2 demonstrates that CHAMELEON 423

achieves strong personalization performance even 424

with new, unseen users, validating our claim that 425

CHAMELEON can effectively generalize to users 426

without prior history. In contrast, ALOE strug- 427

gles in this scenario, suggesting that it may overfit 428

to the characteristics of users in the training set. 429

4.4 Group-scale personalization improves 430

performance 431

Setup. To assess the effectiveness of group-scale 432

personalization compared to single-user person- 433

alization, we run CHAMELEON on groups of 434

varying sizes. We experiment with group sizes 435

of {1, 20, 40, 60, 80, 100} on both LaMP2 and 436

LaMP3 tasks, while keeping the amount of gener- 437

ated insights and preference data per user constant. 438

Results. Figure 3 reveals a clear trend: as the 439

number of users in the group increases, personal- 440

ization performance consistently improves. This is 441

evident both when shifting from a single-user setup 442
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Figure 3: The change of performance when different
number of users are given to CHAMELEON

(left-most point, where number of users = 1) to443

group personalization, and as the group size grows.444

These results support our claim that group per-445

sonalization offers performance gain compared446

to single-user personalization.447

4.5 Outperforms DPO in time-constrained448

scenario449

Setup. We compare CHAMELEON with DPO450

(Rafailov et al., 2024) and ALOE (Wu et al., 2024),451

a tuning-based alignment and SFT-based person-452

alization methods, in a time-constrained scenario453

where alignment must be performed quickly. In454

this setup, we fix the time allowed for all methods455

and get the number of samples for each method456

within that time. This setup reflects real-world situ-457

ations where instant personalization is required for458

new users with little to no available data. Hyperpa-459

rameter details for DPO and ALOE are provided in460

Appendix A.5.461

Results As shown in Figure 4, CHAMELEON462

consistently delivers stable personalization gains in463

the time-constrained scenario, whereas both ALOE464

and DPO struggle with limited sample availabil-465

ity. This supports our claim that CHAMELEON466

is more suitable than resource-intensive ap-467

proaches in time-sensitive scenarios.468

4.6 Ablations469

Setup. To examine the impact of the amount470

of user history data on performance, we run471

Figure 4: CHAMELEON compared with DPO and
ALOE in time-constrained scenarios. The columns
denotes the improvement from the instruction-tuned
model.

CHAMELEON on the LaMP2 task, varying the num- 472

ber of history per user as {5, 10, 15, 20, 25}, while 473

keeping the number of users in the group constant. 474

Results. Figure 5 illustrates that when the 475

amount of user history data is small, the perfor- 476

mance improvement of CHAMELEON is limited. 477

This limitation likely arises from the difficulty in 478

generating accurate personalization insights with 479

insufficient data. Conversely, when the amount 480

of history data is too big, the performance of 481

CHAMELEON declines. We hypothesize that this 482

deterioration occurs because too many history pro- 483

files may introduce unrelated or outdated samples, 484

hindering effective personalization. 485

5 Discussion 486

Limitations. While CHAMELEON successfully 487

delivers scalable personalization with minimal 488

costs, it has some limitations. A key challenge is 489

its dependence on the quality of the self-generated 490

preference data. Although aligning the model with 491
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Figure 5: The change of performance when differ-
ent number of history data per user are given to
CHAMELEON

this data yields promising results, the effectiveness492

of the personalization largely depends on how ac-493

curately and comprehensively user preferences are494

captured by the base LLM. Future research could495

focus on developing more refined metrics to cap-496

ture personal characteristics better, ensuring more497

precise and reliable self-alignment.498

One potential risk with CHAMELEON is the pos-499

sibility of malicious input in user history. Since500

CHAMELEON relies on a limited amount of user501

history to generate self-preference data for align-502

ment, harmful or biased history inputs could unin-503

tentionally lead the model to produce toxic or mali-504

cious responses. This highlights the need for strong505

safeguards, such as thorough filtering and ethical506

review processes, to prevent the model from align-507

ing with or reinforcing negative behaviors while508

still delivering effective personalization.509

Ethical Considerations. Privacy has long been510

a problem for LLM personalization, as personal-511

izing LLMs usually require large-scale personal512

data and preferredly (human) labeled, which could513

lead to potential privacy leaks. Though personal-514

ization dataset, like LaMP benchmark dataset used515

in our experiments, is publicly accessible an does516

not raise privacy concerns, personal data collec-517

tion and usage still presents significant challenge518

in personalizing LLMs. With our approach, we519

only acquire a very small portion of user historical520

data and resolve data labeling problem with self-521

generation technique. And since self-generated522

user preference data are fake synthetic data for per-523

forming alignment, it can possibly reduce the risk524

of privacy leaks.525

Conclusion. We present CHAMELEON, a novel526

light-weight, scalable approach for personaliz-527

ing LLMs without access to large-scale human-528

annotated personal data and individual fine-tuning.529

By leveraging the ability to conclude and capture 530

user characteristics and preferences, CHAMELEON 531

adjusts the model embeddings during inference 532

to generate outputs that are more aligned with 533

user preferences. Our experiments show that 534

CHAMELEON significantly enhance the personal- 535

ization ability of base language models using only 536

a small portion of real user data, and it is able 537

to adapt models with multiple user expectations 538

within one single alignment process. 539

This work represents an initial step toward 540

achieving cost-free, rapid, group-scale personaliza- 541

tion that current personalization methods struggle 542

to address. 543
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A Appendix 790

A.1 Glossary 791

Table 3 shows glossary of terms used in this paper. 792

793

A.2 Dataset and Task Details 794
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personalizing LLMs. We only used LaMP dataset 796

for the purpose of running the experiments. 797

The tasks of LaMP we experimented with are as 798
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10

https://doi.org/10.18653/v1/2024.findings-naacl.39
https://doi.org/10.18653/v1/2024.findings-naacl.39
https://doi.org/10.18653/v1/2024.findings-naacl.39
https://doi.org/10.18653/v1/2024.findings-naacl.39
https://doi.org/10.18653/v1/2024.findings-naacl.39
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2310.20081
https://arxiv.org/abs/2310.20081
https://arxiv.org/abs/2310.20081
https://arxiv.org/abs/2310.20081
https://arxiv.org/abs/2310.20081
https://doi.org/10.18653/v1/2024.acl-long.399
https://doi.org/10.18653/v1/2024.acl-long.399
https://doi.org/10.18653/v1/2024.acl-long.399
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2401.00368
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.09269
https://arxiv.org/abs/2408.13623
https://arxiv.org/abs/2408.13623
https://arxiv.org/abs/2408.13623
https://arxiv.org/abs/2406.02888
https://arxiv.org/abs/2406.02888
https://arxiv.org/abs/2406.02888
https://arxiv.org/abs/2406.02888
https://arxiv.org/abs/2406.02888


Symbol Definition

y Ground truth output
ŷ Model prediction
Hu Set of user history for user u
hiu i-th user history for user h (i-th data data inHu)
eiu Sentence embedding of hiu
Eu Embedding matrix of user history for user u
Hk

u Top k selected history data
CP Personalized agent
CN Non-personalized agent
cPu Personalized insights for user u
cNu Non-personalized insights for user u
ci,Pu i-th personalized insight for user u
ci,Nu i-th non-personalized insight for user u
ŷi,Pu Model prediction conditioned on ci,Pu
ŷi,Nu Model prediction conditioned on ci,Nu
qiu i-th query for user u
pi,Pu Personalized preference for user query qiu
pi,Nu Non-personalized preference for user query qiu
PP
u Set of personalized preferences for user u

PN
u Set of non-personalized preferences for user u

θP Personalized embedding direction
θN Non-personalized embedding direction
θPl,u Personalized embedding direction for user u at layer l
θNl,u Non-personalized embedding direction for user u at layer l
xl Representation (embedding) at layer l
x̂l,u Personalized representation for user u at layer l

Table 3: Glossary of variables and symbols used in this paper.
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1. LaMP 2: Personalized Movie Tagging.800

Given a user profile of user history tagging801

along with the movie description, you are802

tasked to predict the movie tag given a new803

movie description.804

2. LaMP 3: Personalized Product Rating.805

Given a user profile of user history product806

rating along with the product reviews, you are807

tasked to predict the rating of a product given808

a new product review wrote by the user.809

3. LaMP 7: Personalized Tweet Paraphrasing.810

Given a user profile of user history tweets811

you are tasked to predict how the user may812

paraphrase a new given tweet.813

Details of LaMP dataset is presented in Table 4.814

[italic text] presents actual data.815

A.3 Prompt Template816

Following is the history and prompt template used817

to query the base LM to generate preference sam-818

ples for different LaMP task. History prompt for-819

mat follows the format used by LaMP benchmark820

(Salemi et al., 2024).821

LaMP 2: Personalized Movie Tagging822

Personalize prompt: Suppose you are a user823

with the following user profile history of movie824

tagging: [HISTORY]825

Now, given a new description: [QUERY]826

Question: Which tag does this movie relate to827

among the following tags? Just answer with only828

ONE tag name without further explanation. tags:829

[sci-fi, based on a book, comedy, action, twist end-830

ing, dystopia, dark comedy, classic, psychology,831

fantasy, romance, thought-provoking, social com-832

mentary, violence, true story]833

You are a helpfully personalized assistant. You834

try to predict the movie tagging that the user pre-835

ferred based on their history. The user prefers [IN-836

SIGHT]. Answer only with one tag name (sci-fi,837

based on a book, comedy, action, twist ending,838

dystopia, dark comedy, classic, psychology, fan-839

tasy, romance, thought-provoking, social commen-840

tary, violence, true story).841

Your answer: [OUTPUT]842

Non-personalize/Neutral prompt: Suppose you843

are a user with the following user profile history of844

movie tagging: [HISTORY]845

Now, given a new description: [QUERY]846

Question: Which tag does this movie relate to847

among the following tags? Just answer with only848

ONE tag name without further explanation. tags: 849

[sci-fi, based on a book, comedy, action, twist end- 850

ing, dystopia, dark comedy, classic, psychology, 851

fantasy, romance, thought-provoking, social com- 852

mentary, violence, true story] 853

You are a generic and impersonal assistant. You 854

do not consider the user’s preferences or profile 855

history when responding. Your answer shoulds 856

[INSIGHT]. Answer only with one tag name (sci- 857

fi, based on a book, comedy, action, twist ending, 858

dystopia, dark comedy, classic, psychology, fan- 859

tasy, romance, thought-provoking, social commen- 860

tary, violence, true story). 861

Your answer: [OUTPUT] 862

History format: 863

1. The tag for movie: "[DESCRIPTION 1]" is 864

"[TAG 1]". 865

2. The tag for movie: "[DESCRIPTION 2]" is 866

"[TAG 2]". 867

3. ... 868

LaMP 3: Personalized Product Rating 869

Personalize prompt: Suppose you are a user 870

with the following user profile history of product 871

rating based on the user’s review of the product: 872

[HISTORY] 873

Now, given a new review by the user: [QUERY] 874

Question: What is the rating score of the follow- 875

ing review on a scale of 1 to 5? Just answer with 1, 876

2, 3, 4, or 5 without further explanation. 877

You are a helpfully personalized assistant. You 878

try to predict the rating of the product based on the 879

user history ratings. The user prefers [INSIGHT]. 880

Just answer with 1, 2, 3, 4, or 5 without further 881

explanation. 882

Your answer: [OUTPUT] 883

Non-personalize/Neutral prompt: Suppose 884

you are a user with the following user profile his- 885

tory of product rating based on the user’s review of 886

the product: [HISTORY] 887

Now, given a new review by the user: [QUERY] 888

Question: What is the rating score of the follow- 889

ing review on a scale of 1 to 5? Just answer with 1, 890

2, 3, 4, or 5 without further explanation. 891

You are a generic and impersonal assistant. You 892

do not consider the user’s preferences or profile 893

history when responding. Your answer should [IN- 894

SIGHT]. 895

Your answer: [OUTPUT] 896

History format: 897

1. [SCORE 1] is the rating score for product: 898

"[TEXT 1]". 899
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Table 4: LaMP Dataset Detail

Task Input Output

LaMP 2

ID: [id]

[tag]
Input: Which tag does this movie relate to among the fol-

lowing tags? Just answer with the tag name without
further explanation. tags: [sci-fi, based on a book,
comedy, action, twist ending, dystopia, dark com-
edy, classic, psychology, fantasy, romance, thought-
provoking, social commentary, violence, true story]
description: [description]

Profile:{id: [id], tag: [tag], description: [description] }, . . .

LaMP 3

ID: [id]

[score]
Input What is the score of the following review on a scale

of 1 to 5? just answer with 1, 2, 3, 4, or 5 without
further explanation. review: [review],

Profile {id: [id], tag: [text], description: [score] }, . . .

LaMP 7

ID: [id]

[tweet]
Input: Paraphrase the following tweet without any explana-

tion before or after it: [tweet]
Profile:{id: [id], tag: [text]}, . . .

2. [SCORE 2] is the rating score for product:900

"[TEXT 2]".901

3. ...902

LaMP 7: Personalized Tweet Paraphrasing903

Personalize prompt: Suppose you are a twit-904

ter user with the following user profile history905

that shows their preferred way of speaking: [HIS-906

TORY]907

Now, given a new twitter post: [QUERY]908

Question: Paraphrase the tweet in the style the909

user likes without any explanation before or after910

it.911

You are a helpfully personalized assistant. You912

try to paraphrase the tweet in the style the user likes913

based on the history. The user prefers [INSIGHT].914

Your answer: [OUTPUT]915

Non-personalize/Neutral prompt: Suppose916

you are a twitter user with the following user profile917

history that shows their preferred way of speaking:918

[HISTORY]919

Now, given a new twitter post: [QUERY]920

Question: Paraphrase the tweet in the style the921

user likes without any explanation before or after922

it.923

You are a generic and impersonal assistant. You924

do not consider the user’s preferences or profile925

history when responding. Your answer should [IN-926

SIGHT].927

Your answer: [OUTPUT] 928

History format: 929

1. [ TWEET 1 ] 930

2. [ TWEET 2 ] 931

3. ... 932

A.4 Details on Representation Editing 933

We provide the details of Section 3.2. We identify 934

personalized and non-personized directions using 935

singular value decomposition (SVD) or contrast 936

consistent search (CCS) on the preference data em- 937

beddings. Let Φl represent the function that maps 938

an input sentence to the LM embedding space at 939

layer l. For each pair (pi,Pu , pi,Nu ), we obtain their 940

corresponding representations Φi,P
l,u and Φi,P

l,u , re- 941

spectively. To begin, we construct an embedding 942

matrix for personalized direction for user u, de- 943

noted as HP
l,u, using these representations: 944

HP
l,u :=

[
Φ1,P
l,u

∣∣∣. . .∣∣∣ΦK,P
l,u

]T
, 945

where K is the total number of self-generated data. 946

Similarly, we create the non-personalized prefer- 947

ences embedding matrix HN
l,u. 948

SVD-Based Identification. Our approach for 949

identifying personalized embedding directions in- 950

volves using singular value decomposition (SVD) 951

on the preference data embeddings. We extract the 952

top right singular vector of HP
l,u as θPl,u. Intuitively, 953
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we view θ as the direction that best captures the un-954

derlying personalized characteristics. We identify955

the personalized embedding direction for user u as956

follows:957

HP
l,u = UΣV958

θPl,u := V0,∗. (3)959

Here, U and V represent the left and right unitary960

matrices produced by running SVD, respectively,961

and Σ is the diagonal matrix of singular values.962

We define θPl,u as the first row of V, corresponding963

to the top right singular vector of HP
l,u. The non-964

personalized direction θNl,u is defined similarly.965

CCS-Based Identification (Burns et al., 2023).966

Another approach for identifying these directions967

is by finding a hyperplane in the latent space that968

separates personalized data embeddings from non-969

personalized ones. Typically, this is achieved by970

training lightweight probes θl,u that maps ΦP
l,u and971

ΦN
l,u to their respective classification labels (Li972

et al., 2024a). However, we face the challenge973

of avoiding overfitting to the noise inherent in self-974

generated data, which limits the applicability of su-975

pervised classifier loss in our context. To mitigate976

this issue, we employ the unsupervised Contrast-977

Consistent Search (CCS) loss LCCS proposed in978

(Burns et al., 2023). Adapting the definition from979

(Burns et al., 2023) to our notations, LCCS for each980

user u can be expressed as:981

Lconsistency(gθ,b,Φi,P
l,u ,Φ

i,N
l,u )))982

:=
[
gθ,b(Φ

N
l,u)− (1− gθ,b(Φ

P
l,u))

]2
983

Lconfidence(gθ,b,Φi,P
l,u ,Φ

i,N
l,u )))984

:= min
{
gθ,b(Φ

N
l,u), gθ,b(Φ

P
i,u)

}
985

LCCS(gθ,b) :=
1

K

K∑
i=1

(Lconsistency(gθ,b,Φi,P
l,u ,Φ

i,N
l,u )986

+ Lconfidence(gθ,b,Φi,P
l,u ,Φ

i,N
l,u )),987

988

where gθ,b(v) = 1

1+e−(θ⊤v+b)
. Training θNl,u with989

the LCCS objective aims to find a separating hyper-990

plane without fitting any labels with Lconsistency991

and concurrently promoting maximum separation992

with Lconfidence.993

Hybrid Identification. While both SVD-based994

or CCS-based identification can be used to identify995

both of personalized and non-personalized direc-996

tions, our exploration revealed that the best results997

are achieved by combining the two approaches. 998

Specifically, we use SVD to identify θPl,u and CCS 999

to determine θNl,u. This combined approach lever- 1000

ages the strengths of both techniques: SVD’s abil- 1001

ity to capture the primary direction of personalized 1002

embeddings and CCS’s effectiveness in identifying 1003

the hyperplane that best separates non-personalized 1004

embeddings from personalized ones. 1005

A.5 Time-constrained experiment Set Up 1006

CHAMELEON The approximation for the time 1007

taken for our experiment is 10, 20, 30 and 40 min- 1008

utes. 1009

DPO DPO experiment is trained on 40%, 60%, 1010

80%, 100% of the LaMP2 partition to get the ap- 1011

proximate same time. The hyperparameters we 1012

used consist of 1 training epoch, a batch size of 16, 1013

a gradient accumulation step of 1, a learning rate 1014

of 5e-5, a max grad norm of 0.3, a warmup ratio 1015

of 0.1, a precision of bfloat16, a memory saving 1016

quantize flag of "bnb.nf4", a learning rate scheduler 1017

type of cosine, and an optimizer of AdamW with 1018

PEFT configurations of a r of 256, a α of 128, a 1019

dropout of 0.05 and a task type of causal language 1020

modeling" 1021

ALOE We trained ALOE with 7%, 23%, 39%, 1022

55% of the LaMP2 training partition with a rel- 1023

atively equal percentage of CodeAct data (Wang 1024

et al., 2024b) as described by ALOE (Wu et al., 1025

2024). We used parameters provided in their SFT 1026

hyperparameters, which contains 1 training epoch, 1027

a per device train batch size of 1, a gradient accu- 1028

mulation step of 48, a learning rate of 1e-5, and a 1029

max sequence length of 8192. 1030

A.6 Computing Resources 1031

All experiments are trained on an Amazon EC2 1032

Instances with eight NVIDIA A100-SXM4-40GB. 1033
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