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Figure 1. Given an audio and an image (green box), we produce animations beyond image stylization with complex but
natural dynamics, synchronized with input audio at each frame. Results are produced by our A2VD model trained on the
proposed AVSync15 dataset.

Abstract

Contemporary visual generation methods often fall short
in effectively control along temporal dimension. In response,
we introduce Audio-Guided Visual Animation (AGVA), a task
aimed at generating image animations that are temporally
synchronized with audio cues. To address the absence of
datasets tailored for this task, we present AVSync15, the first
benchmark with highly synchronized audio-visual dynamics.
Curated from the extensive but noisy VGGSound dataset,
AVSync15 consists of 15 diverse audio-visual categories
ranging from animal sounds, human actions, musical instru-
ments, to triggered events. In addition, we introduce A2VD,
a diffusion model capable of producing semantically aligned
and temporally synchronized image animations from audio.
We provide thorough evaluations to validate AVSync15 as a
reliable dataset for synchronous video dynamics generation
task and the superior performance of A2VD. Moreover, we
explore various potentials of the trained A2VD in a range
of audio-guided visual generation applications, bringing in
new vision for controllable visual generation.

1. Introduction
Generative modeling has witnessed remarkable progress in
recent years, largely due to the development of stronger
and robust architectures such as diffusion [13, 27, 30] mod-
els. Conditional generation and, in particular, text-to-image
generation [26, 27], given its immense application potential
and the availability of high-quality training data [28], has
been the focal point. Nevertheless, the success of text-to-
image generation has also spurred exploration of generation
in other modalities, including text-to-video [7, 16, 29, 35],
text-to-audio [14], audio-to-image [10, 31], among others.

While text conditioning has been well investigated, the
potential of audio has been largely overlooked. The tempo-
ral dimension of audio signals offers a unique advantage
over text for video generation. While text conditioning
provides direct control over global semantics, audio con-
ditioning can provide additional fine-grained control at each
frame of the video generation process. However, current
audio-conditioned generation models, including those used
in audio-to-image [10, 19, 31] and audio-to-text [17] gen-
eration, often encode audio into a single global semantic
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feature, neglecting its temporal aspect. Even in prior audio-
to-video generation works [19], the focus has been primarily
on semantic correlation, with temporal synchronization be-
tween audio and video motion remaining largely unexplored.
Although there exists some recent work [15, 18] attempting
to generate audio-synchronized video, they mainly studied
monotonous audio classes [19] such as weather and environ-
ment sound, where the audio cues can be simply connected
with visual effects by changing image texture and styles.
The complex visual dynamics triggering the sound, such as
object motion and interaction, are completely ignored.

In this work, we bridge this gap by tacking a more chal-
lenging generation task – Audio-Guided Visual Animation
(AGVA). The goal of AGVA is to animate images, generat-
ing a video sequence with motion dynamics semantically-
aligned and temporally-synchronized with an input audio.
Aiming at synchronizing the dynamic aspects of audio with
appropriate visual changes in the animation, it necessitates a
sophisticated use of the audio’s temporal structure. AGVA
not only expands the scope of conditional generation, but
also introduces a novel dimension of fine-grained control
beyond text tokens for multi-modal content generation.

Despite the potential applications, AGVA presents several
challenges. The first challenge relates to a lack of quality
training datasets to learn video dynamics synchronization,
which requires strong correlations at audio-visual content at
each moment in the video. In other words, sound sources
should be easily located in the scene and their visual motions
should be clearly associated with the corresponding sound
(temporally synchronized and semantically appropriate). In
addition to the requirements for audio-visual synchroniza-
tion, the video content should also be of high quality for gen-
eration. However, existing audio-visual datasets are either
too noisy [5, 6, 9], containing a large number of unassoci-
ated audio-visual pairs [24], or are overwhelmed by ambient
sound categories that lack meaningful motion cues [19].

To address this, we curated a high-quality dataset for
AGVA, denoted AVSync15, from the noisy VGGSound
dataset [5]. Due to the overwhelming noise of real-world
videos as in VGGSound, direct manual curation would be
laborious and inefficient. We thus leveraged a two-step data
cleaning pipeline with automatic and manual curation steps.
In the first step, we use a variety of signal processing tech-
niques and foundation models to automatically filter videos
according to several metrics, from raw pixel differences to
high-level audio-visual synchronization. Then, to ensure
the high quality of training data, we further conduct manual
curation in the second step, resulting into a final dataset with
1500 sounded videos uniformly spreaded over 15 diverse
categories, from animal sounds to triggered events.

The second challenge lies in the development of effective
AGVA models capable of generating natural and highly syn-

chronized video motions. The closest work to ours are AAD-
iff [18] and TPoS[15], which however have been discussed
above to focus on environment sound categories lacking
motion cues and merely stylize images along the tempo-
ral dimension. AADiff even simplified audio features into
temporal amplitudes and a global semantic feature, thus gen-
erating visual effect re-weighted by audio amplitude at each
frame. Audio-video synchronization in the world however is
much more complex. For instance, dog barking involves not
only "opening mouth" motion synchronized with the "bark-
ing" timestamp, but also subtle details such as the dog’s
change of pose at the other timestamps, e.g., raising head.

To address this challenge, we propose a novel architec-
ture named Audio-to-Video Latent Diffusion model (A2VD),
which builds upon a pre-trained latent diffusion model with
text conditioning [27], and modify it for more effective syn-
chronization. First, to enable precise semantic and synchro-
nized audio control at each timestep, we leverage the pre-
trained ImageBind [10] model to encode audio into time-
aware semantic tokens, and fuse them into image latent
features via cross attention. To capture complex video mo-
tions, we incorporate temporal attention layers with learnable
positional embeddings to the diffusion model. Finally, to
encourage faithful animation of the provided image, we in-
troduce temporal convolutions and attention layers to always
lookup on the input image, i.e., first-frame conditioning.

With the carefully designed model and dataset, we are
able to obtain a well-trained model specialized for AGVA,
and produce animations with visually pleasing and audio-
synchronized motions (Fig. 1). We provide thorough experi-
ments to validate the effectiveness of the proposed dataset,
AVSync15, and the architecture design of A2VD. We also
demonstrate how to deploy A2VD for a variety of audio-
guided applications, including editing and replacing the in-
put audio. Code and dataset will be open-sourced.

2. Related Work
Conditional visual generation Many conditional visual
generation models based on diffusion process [13, 30] have
emerged recently. Benefiting from more efficient architec-
ture, large-scale training data [28], and aligned semantic
space [25], Latent Diffusion Model [27] has achieved great
success to generate semantically aligned images conditioned
on text. This inspired researchers to explore various visual
generation tasks, such as text-to-video [3, 16, 35, 36], audio-
to-image [10, 31], and audio-to-video [15, 19]. While some
work adopted a training-free strategy [16, 18, 35] or trained
from scratch, the others augmented the architecture of a
pretrained text-to-image model by carefully adding some
trainable layers to learn task-specific information [3, 15].

In this work, we extend this trend by developing a model
for the Audio-Guided Visual Animation task, augmenting
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pre-trained StableDiffusion models with temporal layers and
a synchronized audio conditioning mechanism.
Audio-to-Video generation Audio, like text, has been
widely used as a semantic signal in visual generation
tasks [10, 31]. However, these approaches often overlook
the temporal aspect inherent in audio. Traditionally, this
temporal aspect has been leveraged to generate synchronized
talking faces [23, 37–39], but synchronized visual content
generation across a broader range of classes has been rel-
atively unexplored. Recent advances include AADiff [18],
which re-weights the word-image cross-attention map in
LDM at each timestep using audio amplitude to produce
visually pleasing results. Similarly, TPoS [15] learns seg-
mented audio semantic features to fuse with LDM, aiming
to create audio-synchronized video content. These meth-
ods, however, primarily focus on monotonous sound classes,
as demonstrated in the Landscapes dataset [19]. They are
limited to modifying appearance and style within an image
without capturing the natural dynamics of video content.

Addressing this limitation, our work introduced
AVSync15, a high-quality dataset specifically designed for
the Audio-Guided Visual Animation task. AVSync15 stands
out from previous efforts by focusing on synchronization
cues between audio and visual dynamics. This allows for
object-centric animation generation, moving beyond mere
visual effect animation. We further propsose a model, A2VD,
to facililate AGVA task by training on AVSync15.

3. Audio-Guided Visual Animation
In this work, we introduce Audio-Guided Visual Animation
(AGVA), where the goal is to generate a video conditioned
on an audio clip and a single image. Formally, given a T
second audio clip a and an image x1, the goal of AGVA is to
generate a sequence of T×r−1 frames (x2, . . . ,xT×r) con-
stituting the video animation, where r is the desired frame
rate. Despite the simple formulation, our AGVA task is
challenging in that an effective generated video sequence
must be 1) composed of high-quality generated frames, 2)
semantically aligned with the given image x1 and audio
a, 3) temporally coherent to model the natural motion dy-
namics, and (4) the motion of frames is well synchronized
with given audio a. Previous works on audio-reactive video
generation [15, 18] mainly study visual effects animation on
monotonous classes, thus hardly satisfy 3 and 4 especially
when requirging generating object actions.

3.1. AVSync15: A High-Quality Audio-Visual
Dataset for Synchronized Video Generation

We start by observing that existing audio-visual datasets are
either too challenging [5, 6, 9] for audio-to-video genera-
tion tasks due to noises like rapid scene changes/camera
motion, missing/static frames, and out-of-scene audio, or

only contain ambient and style classes [19, 20] like weather.
Thus, to facilitate research on AGVA, we assembled a

high-quality dataset specifically designed for audio-guided
video generation, ensuring a close synchronizatino between
audio and visuals. In broad terms, the selection of videos for
our dataset was based on the following criteria. 1) High Cor-
relation: Every significant visual change in the video should
be closely associated with audio at each timestamp, and vice
versa. 2) Dynamic Content: We sought content rich in tem-
poral changes, excluding ambient or monotonous classes like
running fans or rain. 3) Quality and Relevance: Both video
and audio needed to be clean, stable, and representative of
their respective categories.
Preliminary curation We constructed our dataset from VG-
GSound [5], a large-scale dataset with 309 diverse audio
classes. Similar to VGGSoundSync [6], we began by nar-
rowing down the videos to 149 classes with potentially clear
audio-visual synchronization cues, removing ambient classes
without video synchronization events, such as hair dryer
drying. We refer to this intermediate dataset as VGGSS.
From VGGSS, we further deployed a sequence of automatic
cleaning steps and a final manual selection stage to iden-
tify appropriate videos. We summarize curation procedures
below and provide every details in the Suppl.
Automatic curation First, we utilize PySceneDetect [1] to
split videos with sharp scene changes to different scenes.
These scenes are still likely to contain both high-quality and
low-quality short sub-clips. To maximize usage, we split
each scene into 3-second clips with 0.5-second strides, and
filtered out unsuitable clips based on the following metrics:
Raw Pixel Difference We calculate average pixel differ-

ences between consecutive frames and remove clips with
static frames/small or excessive motion/large value.

Image Semantics Difference To complement the above met-
ric in the semantic space with potential zoom-in/out static
frames and semantic transitions, we calculate a similar
score as above by encoding images into CLIP features.

Waveform Amplitude We exclude clips whose maximum
waveform amplitude is low, indicating weak audio cues.

CLIP Semantic Alignment With pre-trained Image-
Bind [10], we compute average Image-Audio and
Image-Text CLIP alignment scores [25] (cosine similarity
of CLIP features) in a video, removing clips with low
scores to ensure cross-modal semantic alignment.

Audio-Video Synchronization To measure audio-visual syn-
chronization, we follow VGGSoundSync [6] to con-
trastively train an audio-visual synchronization classifier
on VGGSS, ending up with a comparable 40.85% test ac-
curacy. The model outputs an unbounded AVSync score
ϕij for each input audio-video pair (ai,vj). During train-
ing, these scores are computed for the synchronized pair
(ai,vi) and multiple temporally shifted pairs from the
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same instance. Contrastive loss is then applied on these
shifted pairs to maximize the synchronization probabil-
ity psync,i =

exp(ϕii)∑
j exp(ϕij)

to distinguish the synchronized
pair from shifted ones. With psync as a synchronization
indicator, we removed the low-scoring clips.

We empirically determined the thresholds of each metric
by prioritizing quality, acknowledging that some acceptable
clips might be discarded to maintain a high-quality final
dataset. After automatic curation, we merged consecutive
3-second clips sampled from the same video, and further
removed categories with less than 100 examples to address
category imbalances, resulting in a dataset with 76 categories
and 39,902 examples. We refer to this dataset as AVSync-AC
(Audio-Visual Synchronization with Automatic Curation).
Manual curation Manual intervention is still essential to
ensure quality. To this end, we selected a diverse set of 15
categories with clear audio-visual cues from AVSync-AC for
further manual refinement, including categories ranging from
animals and human actions to triggered tools and musical
instruments. Manual curation once again sought to identify
appropriate videos for AVGA using the criteria above: high
correlation, dynamic content, and quality and relevance. We
also extracted sub-clips with minimal duration of 2-seconds
from examples when necessary.
Dataset comparison The final dataset, AVSync15, contains
100 videos per category, each 2 to 10 seconds long. We
allocated 90 videos for training and 10 for testing in each
category. We provide an overview of AVSync15 in Fig. 2. To
verify the effectiveness of our curation pipeline, we randomly
sample 3 splits with 1500 data on the selected 15 categories
from VGGSS and AVSync-AC, and quantitatively compare
them with AVSync15 in Fig. 3. We also compare AVSync15
with existing audio-visual datasets in Suppl., highlighting its
attributes for AGVA tasks.

3.2. AGVA Evaluation Metrics
AGVA is a multi-faceted generation task, requiring carefully
designed and diverse metrics for comprehensively evaluation.
Therefore, in the our proposed benchmark, we first evaluate
the generated video from the following conventional metrics:
Visual Quality Following previous works [4, 8], we use

Fréchet Inception Distance (FID) [11] to measure im-
age quality of image frames and Fréchet Video Distance
(FVD) [33] to evaluate the quality of the generated videos.

Semantic Alignment To assess semantic alignment, we
reuse the CLIP alignment scores mentioned in automatic
curation, i.e., IA-Align and IT-Align.

Human Evaluation While automated metrics are useful for
quantitative evaluation, they are not always aligned with
human perception. A human evaluation study is thus used
to assess the quality of the generated videos. Specifically,
we ask human raters to compare videos generated by

multiple models and select the best according to Image
Quality, Temporal Frame Consistency, and Audio-Visual
Synchronization. We provide more details on the human
evaluation study in the supplementary material.

Furthermore, when evaluating a generated video v̂ from au-
dio a, we cannot generate its shifted videos, which poses
challenges to compute aforementioned synchronization prob-
ability psync as a metric as in Automatic Curation. This can
be solved by contrasting on groundtruth video v instead,
i.e., psync = 2×exp(ϕ(v̂,a))

exp(ϕ(v̂,a))+exp(ϕ(v,a)) , where the multiplier 2
is used to normalize psync into range [0, 1]. However, such
a perception metric is still inaccurate for generated results.
This is because during conventional training [6], the syn-
chronization classifier only contrasts on audio-video pairs
sampled from the same instances, thus is implicitly con-
ditioned on the semantically aligned audio-visual content
as psync|align. In practice, when the generated visual con-
tent drift too much from groundtruth frame, the metric can
fail. We thus propose Aligned Synchronization (AlignSync),
a more robust metric that more faithfully measures audio-
visual synchronization. We first measure semantic alignment
probability between generated v̂ and condition audio a by
normalizing Image-Audio Alignment score into [0, 1], i.e.,
IA-Align+1

2 . We then recover the implicit semantics condi-
tion of psync by multiplying it with the semantic alignment
probability, i.e.,

AlignSync = psync ·
IA-Align + 1

2
(1)

The metric then is used to evaluate synchronization between
generated results and input audio, with our pretrained syn-
chronization classifier and ImageBind. We provide empirical
justifications for AlignSync in supplementary material.

4. Audio-to-Video Generation
4.1. Preliminary: Text-to-Image Latent Diffusion
Text-to-image latent diffusion model (LDM [27]) encode
images x into a lower-dimensional latent space z = E(x)
using a pre-trained perceptual auto-encoder, and learn the
conditional distribution p(z|τ ) of latent space given a CLIP-
encoded text prompt condition τ . Specifically, LDM models
the conditional distribution by learning to gradually denoise
latents zk at each diffusion step k, which are obtained by
corrupting the image latent z by normally distributed noise
ϵ over k time steps. A denoising UNet architecture param-
eterized by θ is deployed to estimate the added noise ϵ by
minimizing the following objective

LLDM = EE(x),ϵ∼N (0,1),k

[
∥ϵ− ϵθ(z

k, k, τ )∥22
]

(2)

During inference, LDMs start from a random gaus-
sian noise map zK , and iterate over K reverse diffusion
steps [13, 30], gradually predicting and removing resid-
ual noise zk−1 = zk − ϵθ(z

k, k, τ ), until the image la-
tent is found z0. LDMs then decode the latent into image
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Figure 2. Overview of 15 categories in AVSync15. Left to right: baby babbling crying, dog barking, lions roaring, chicken
crowing, frog croaking, playing cello, playing trombone, playing trumpet, playing violin, cap gun shooting, machine gun
shooting, hammering, shapen knife, striking bowling, toilet flushing.

Figure 3. Categoriy-wise comparison of AVSync score ϕ,
IA-Align, and IT-Align scores on AVSync15 and equiva-
lently sized 3 splits of VGGSS and AVSync-AC.

x0 = D(z0) using the pre-trained decoder D. We will refer
to the images by their latent representation z (rather than x),
for simplicity, throughout the rest of this paper.

4.2. Audio-to-Video Latent Diffusion
Given the impressive performance of latent diffusion mod-
els, we seek to adapt them for audio-guided video genera-
tion. However, most of current approaches [10] use audio
primarily for its global semantics as opposed to temporal
synchronization. We thus propose an Audio-to-Video Latent
Diffusion model (A2VD), which starts from a pretrained im-
age LDM and incorporates synchronized audio control and
trainable temporal layers for improved video consistency.

Given an image z1, a text prompt (i.e., the category name)
y which is encoded by CLIP into τ , and a T -seconds audio
signal a, our model generates sequences of r × T − 1 fu-
ture frames {zt}rTt=2 depicting plausible evolutions of the
image z1 over time synchronized with the provided au-
dio, through iterative denoising. Given a video dataset
with synchronized audio-visual content, the denoising UNet,
ϵθ(z

k
2:rT , k; z1,a, τ ), can be easily trained by randomly

sampling sequences of frames, using the first frame as the
input image z1 (together with the corresponding audio and
text prompt conditioning), and using the remaining frames
as targets for z0

2:rT . The overall architecture, illustrating
how A2VD incorporates the various conditioning signals,
z1,a, τ , is shown in Fig. 4, and discussed in detail below.
First-frame conditioning While LDMs do not inherently
support image conditioning, previous studies have intro-
duced image inversion methods for this purpose. Image
inversion however can be both inaccurate [30] and time-
consuming [21]. To circumvent this, we directly input z into
the UNet model as the known latents of the first frame, irre-
spective of the diffusion step k. For all subsequent frames,
we adhere to the original LDM design, using independently

sampled noised latents
(
zk
2 , ...,z

k
rT

)
as initial inputs.

Temporal convolutions and temporal attentions To gener-
ate temporally consistent videos, we incorporate temporal
convolutions and attention layers into the UNet backbone.
Similar to R(2+1)D [32], we append a 1D temporal convo-
lution layer with a kernel size of 3 after each 2D conv layer.
We also introduce a unique first-frame lookup to better ad-
here to the starting image (see next paragraph). In addition
to temporal convolutions, we also include temporal attention
layers [3] with learnable temporal positional encodings [34]
to effectively model long-range visual dependencies. Each
frame index t is converted into a sinusoidal positional em-
bedding, which, after a learnable linear projection, is added
to the corresponding frame’s latents. Each frame’s local
representation, zhwt, is then updated by attending to all
frame latents at the same position, including the base frame
(zhw1, zhw2, . . . ,zhw(rT )), using a learnable self-attention.
First-frame lookups and first-frame attention To ensure
that video generation adheres to the input image, we adjusted
the receptive field of all temporal convolutions to always en-
compass z1, thereby preventing it from being overlooked
when generating distant future frames. Specifically, the re-
ceptive field of each frame zt include frames (z1, zt−1, zt)
as opposed to (zt−1, zt, zt+1). This first-frame lookup
mechanism is applied to three components in the UNet, i.e.,
the input/output conv layer and all residual blocks.

In addition to first-frame lookups, we further modify the
spatial self-attention layers of the backbone UNet model,
adopting the first-frame conditioning strategy proposed
in [16] for enhanced image animation. Specifically, in these
layers, the representation of each frame, zt, are updated
by attending to the base image’s representation, z1, rather
than the frame zt itself. Consistent with [16], we keep the
first-frame attention layers frozen during this process.
Audio conditioning To facilitate audio-guided generation,
we employ a pretrained ImageBind audio encoder [10] to
encode the audio. This encoder computes a global audio
token, ag, encapsulating global semantics, and Fa × Ta

patch tokens, af,t, across a grid of Fa frequency bands and
Ta time steps, providing local synchronization cues. We
achieve frame-specific audio guidance by dividing the patch
tokens temporally into rT segments, corresponding to the
base frame z1 and the following (rT − 1) frames to be
generated, and appending the global token to each segment.
The resulting sequence of audio tokens, at, for the first given
frame (a1) and for generated frames ({at}rTt=2), are then
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Figure 4. A2VD overview. Left: We use ImageBind to encode audio into semantically aware time-dependent feature tokens
{at}rT1 , and CLIP to encode audio category into prompt condition τ . During inference, the model receives first frame and
subsequent frame noise latents, and iteratively refines the subsequent noises via diffusion. First-frame lookup convolutions
at input/output conv layers and intermediate residual layers (hidden for ease of visualization), first-frame attention, audio
cross attention, and temporal attention layers are introduced to learn synchronized visual motion. Right: Anatomy of modules
processing each frame. Trainable layers are marked with vertical stripes. Different frames share the same UNet.

input into the UNet model and fused with the representations
of the corresponding frame, zt, via cross-attention [34].
Text conditioning We follow original LDMs [27] by feeding
in the audio category as prompt to every frame latent via
frozen text cross attention layer.
Classifier-free audio guidance Classifier-free guidance [12]
is a technique used in generative models to amplify the in-
fluence of the input prompt on the generated output, without
the need for a separate classifier to validate the output. We
extend this concept to amplify audio guidance for improved
synchronization. Specifically, we first compute a null audio
embedding, a∅, by encoding an all-zero waveform. During
training, we randomly replace a with a∅ with a 20% prob-
ability, thus, training the model for both audio-conditioned
and unconditioned generation. Then, during inference, we
can enhance the effect of audio guidance by scaling the
latents generated from the unconditional generation to the
conditioned generation with a factor η

zk−1
2:rT = (1− η) · ϵθ(zk

2:rT , k; z1,a∅, τ )

+η · ϵθ(zk
2:rT , k; z1,a, τ ) (3)

In practice, we made classifier-free audio guidance optional
and did not use prompt classifier-free guidance as in LDM
by always feeding in audio category as condition τ .

5. Experiments
5.1. Implementation
Dataset Most of existing audio-visual datasets [5, 6, 9] are
in poor quality for visual generation tasks due to camera
motion, cluttered background, and non-centric objectsm.
The other high-quality datasets [19] contain mostly ambient
sounds, such as whether and color style, without desired

natural video dynamics and audio-visual synchronization
motion cues. One previously collected dataset potential for
AGVA is The Greatest Hits [22], which captures the unique
audio-visual responses of various objects and materials (such
as dirt, water, or a desk) when struck by a stick. It is of high
quality however with limited diversity, as all videos contain
unitary motion of hitting, similar to the hammering category
in our AVSync15 dataset. Thus, we conducted our main
experiments on the proposed AVSync15 with 15 categories,
1350 training videos, and 150 testing videos, and used The
Greatest Hits for further evaluation of the proposed model.
We also verified the effectiveness of the proposed dataset cu-
ration pipeline by evaluating models trained on equivalently
sized uncurated versions of the dataset (VGGSS), and with
automatic curation alone (AVSync-AC).
Baselines To verify the effectiveness of audio input, we
first provide two baselines without audio input. One
is the recently introduced image-text-to-video baseline
VideoCrafter [7] pretrained on the large-scale video dataset
WebVid10M [2] with 10M high-quality videos. The second
is I2VD, our proposed model trained without audio input.
Secondly, we re-implemented AADiff [18], an image editing
based training-free synchronized audio-to-video generation
model. We do not compare to TPoS [15] since its architec-
ture is challenging for faithful re-implementation.
Training and evaluation We adopted publicly-available
StableDiffusion-V1.5 [27] and ImageBind [10] trained on
subsets of LAION2B-en [28] and AudioSet [9] respectively.
We only trained the temporal layers with stripes in Fig. 4. In
all experiments, we use Adam optimizer with a batch size of
64, a constant learning rate of 0.0001, and weight decay of
0.01. Models were trained for 37000 iterations with 256x256
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Table 1. (a): Overview of Audio-Guided Visual Animation performance on AVSync15. User study on the right side shows the
number of votes to compare 4 models on 3 metrics: Image Quality, Frame Consistency, and Audio-Video Synchronization.
(b): Performance on TheGreatestHits. (c): Effect of first-frame conditioning on models trained and evaluated on AVSync15.

Model FID↓ FVD↓ IA-Align↑ IT-Align↑ AlignSync↑ User Study
IQ FC Sync

VideoCrafter [7] 11.20 0.120 36.9± 9.8 29.9± 3.4 59.08± 10.06 38 20 12

AADiff [18] 16.53 0.172 34.6± 11.3 29.1± 4.2 61.15± 9.68 37 4 5

I2VD 11.40 0.064 38.3± 9.6 30.4± 2.8 60.74± 9.22 62 90 91

A2VD w/o η 11.19 0.070 38.6± 9.6 30.5± 2.8 62.24± 8.57 - - -
A2VD w/ η = 1 11.49 0.076 38.4± 9.6 30.3± 2.9 62.01± 9.00 - - -
A2VD w/ η = 4 11.13 0.075 38.6± 9.6 30.4± 2.8 63.06± 8.51 163 186 192

A2VD w/ η = 8 11.18 0.091 38.1± 9.6 30.3± 2.8 63.31± 8.56 - - -
A2VD w/ η = 12 11.40 0.118 37.2± 9.6 29.9± 2.9 63.24± 8.58 - - -

(a)

Model FID↓ FVD↓ AlignSync↑

I2VD 8.38 0.068 49.60± 7.38

A2VD w/o η 8.20 0.065 50.54± 7.38

A2VD w/ η = 1 8.28 0.051 50.92± 7.26

A2VD w/ η = 4 8.07 0.040 51.51± 7.25

(b)

FF-Lookups FF-Attn FID↓ FVD↓ AlignSync↑

✗ ✗ 11.36 0.071 61.83± 9.07

✓ ✗ 11.16 0.068 61.97± 8.92

✓ ✓ 11.19 0.070 62.24± 8.57

(c)

Figure 5. Results of A2VD with η = 4.0 on The Greatest
Hits. We use prompt hitting with a stick for all videos.

image size on AVSync15 and 16000 iterations with 128x256
on The Greatest Hits, both with 2-second input audio and 12-
frame video in 6 FPS. We use the metrics in Section 3.2 for
evaluation, i.e., FID, FVD, IA-Align, IT-Align, AlignSync,
and user study. We put more evaluation details in Suppl.

5.2. Main results
Table 1a compares the models on AVSync15. Since model re-
ceives the first frame as condition, which is a shortcut to gen-
erate animations, all reported FID/FVD scores are relatively
low. As can be seen, A2VD outperforms all baseline meth-
ods in terms of AlignSync, while maintaining high visual
quality and semantic alignment. In contrast, VideoCrafter
and I2VD, without audio conditioning, score low on syn-
chronization. VideoCrafter also struggles to generate high-
quality, semantically aligned content, as evidenced by its
performance on FVD, IA-Align, and IT-Align. Upon exam-
ining sample outputs from VideoCrafter, we observed that
this could be attributed to its inability to accurately replicate
the input image, resulting in semantic drift from given image.
On the other hand, by directly reweighting the attention to
prompt tokens using audio amplitude, AADiff achieves a
relatively high AlignSync score. However, the simplistic use
of audio amplitude for adjusting animation compromised vi-
sual quality and semantic alignment, resulting into frequent
flickering and artifacts. AADiff also failed in categories
such as playing violin, hammering, and striking bowling,
where the dynamics are far more complex than stylization

Figure 6. Audio amplitude versus classifier-free audio guid-
ance. We visualize videos generated with top: original audio
with η = 1; mid: 100× amplified audio with η = 1; bottom:
original audio with η = 8.

and weather. In contrast, A2VD was able to generate frame
sequences with natural video dynamics and more aligned
with the input audio. Generated samples are shown in Fig. 1.
We provide more qualitative comparisons in Suppl.
Human evaluation Our user study asked participants to
compare the videos generated by four different method and
select the best one for each of the three criteria: visual qual-
ity, temporal consistency, and audio-visual synchronization.
In total, we collected 900 responses, uniformly distributed
among all classes, from 15 participants, and reported the
number of votes obtained by each method in Table 1a. As
shown, A2VD generated the best image animations on all
three criteria, with an especially large margin on AlignSync.

5.3. Ablation studies
Audio guidance We explored the effect of classifier-free
audio guidance factor η. By increasing η from 1.0 to 8.0, we
observed that the generated frames have clearer visual effects
indicative of the audio input, yielding generated videos that
appear better synchronized. This observation was validated
quantitatively in Table 1a and qualitatively in Fig. 6.
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Fig. 6 also compares increased audio-guidance factors
with videos generated with increased audio amplitudes. Prior
audio→visual generation works [15, 18, 31] claimed that
louder audio often leads to visual effects that are better
aligned with the audio condition. To examine the influence
of audio amplitude, we generated videos for two classes, cap
gun shooting and playing cello, with the audio amplitude
increased by a factor of 100. Our findings, illustrated in Fig-
ure 6, show that an extreme increase in audio amplitude does
not distort the generated frames but slightly intensifies the
visual effects, as seen by the presence of smoke. In compari-
son, audio guidance was much more effective in enhancing
not only visual effects but also object dynamics, as indicated
by more exaggerated hand moving when playing cello.
Audio conditioning We evaluated our model’s ability to
incorporate audio cues by training an audio-unconditioned
variant, I2VD. The quantitative results, presented in Table 1a
and Table 1b for the AVSync15 and The Greatest Hits respec-
tively, demonstrate that our proposed architecture effectively
enhanced audio-visual synchronization without compromis-
ing visual quality or semantic alignment. The introduction of
classifier-free audio guidance allows for a trade-off between
visual quality and higher synchronization.
Effect of first-frame conditioning We also evaluated the ef-
fect of the proposed first-frame conditioning mechanism on
model performance. As shown in Table 1c, the model trained
with first-frame conditioning achieved better performance es-
pecially on AlignSync, suggesting that first-frame condition-
ing (as also observed in prior work on text-conditioned im-
age animation) can help the model to better generate videos
consistent with the original image.
Effect of data curation To assess the effectiveness of our
data cleaning pipeline, we randomly sampled subsets from
VGGSS and AVSync-AC, ensuring equal training data scale
and balanced category distributions, i.e., 90 training videos
for each of the 15 categories. We trained A2VD on these
subsets using the same training strategy, and reported their
performance on Table 2. The inferior FID, FVD, and seman-
tic alignment scores of VGGSS highlight the unsuitability
of uncurated data sources for video generation tasks. On
the other hand, automatic curation, as deployed in AVSync-
AC, enabled training generation models with visual quality
and semantic alignment scores comparable to those from
AVSync15. With manual cleaning, synchronization is fur-
ther improved. We provide qualitative comparisons in Suppl.

5.4. More applications
Although our model is trained for AGVA task on AVSync15,
we find the trained model can be easily extended for more
applications, including animating images on the internet,
audio-to-video generation without image condition, gener-
ating into distant future guided by long audio, etc. Here we
only discuss one of them and leave the others in Suppl.

Figure 7. Baby animations controlled by different audios.

Table 2. Effect of training data curation steps on model
performance. Models are evaluated on AVSync15 test set.

dataset Automatic
Curation

Manual
Curation FID↓ FVD↓ IA-Align↑ AlignSync↑

VGGSS ✗ ✗ 12.96 0.143 30.0± 12.0 58.95± 9.12

AVSync-AC ✓ ✗ 11.42 0.071 38.2± 9.6 61.54± 8.81

AVSync15 ✓ ✓ 11.19 0.070 38.6± 9.6 62.24± 8.57

Image animation with (un)related audio To better under-
stand how the model behaves when the audio condition is
unrelated to the depicted scene, we animated a variety of
images with audio from different categories. Fig. 7 shows
an example where a baby’s face is animated to the sound
of several audio signals. As can be seen, the baby’s mouth
opens and his expression changes in sync with a variety of
audio conditions. For example, lions typically roar for longer
duration and with clear visual cues like raising head which
has been well transferred to the baby in synchronization,
without distorting image content. However, the baby’s face
remained unaltered when the audio condition was unrelated,
such as with the sound of a gun shooting and playing cello.
This interesting behavior can be leveraged for a variety of
audio-guided animation objectives in the real world.

6. Conclusion
In this paper, we propose to solve Audio-Guided Visual
Animation (AGVA) task, with an emphasis on learning syn-
chronization between provided audio and generated video
dynamics. Lacking an appropriate dataset for the task, we
adopted two-stage data cleaning pipeline to curate a clean
and high-quality dataset AVSync15, as well as associate
evaluation benchmark. We further proposed an Audio-to-
Video Latent Diffusion model for training. As such, we can
generate highly synchronized video with consistent motion
dynamics from images and audios. We hope our research
can inspire future work on conditioned generation.
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