
Is Free Self-Alignment Possible?

Dyah Adila† Changho Shin† Yijing Zhang† Frederic Sala†

†University of Wisconsin-Madison
{adila, cshin23, yzhang2637, fredsala}@wisc.edu

June 6, 2024

Abstract

Aligning pretrained language models (LMs) is a complex and resource-intensive process, often requiring
access to large amounts of ground-truth preference data and substantial compute. Are these costs necessary? That
is, it is possible to align using only inherent model knowledge and without additional training? We tackle this
challenge with ALIGNEZ, a novel approach that uses (1) self-generated preference data and (2) representation
editing to provide nearly cost-free alignment. During inference, ALIGNEZ modifies LM representations to reduce
undesirable and boost desirable components using subspaces identified via self-generated preference pairs. Our
experiments reveal that this nearly cost-free procedure significantly narrows the gap between base pretrained and
tuned models by an average of 31.6%, observed across six datasets and three model architectures. Additionally,
we explore the potential of using ALIGNEZ as a means of expediting more expensive alignment procedures.
Our experiments show that ALIGNEZ improves DPO models tuned only using a small subset of ground-truth
preference data. Lastly, we study the conditions under which improvement using ALIGNEZ is feasible, providing
valuable insights into its effectiveness.

1 Introduction
Large language model (LMs) alignment involves the use of complex and expensive pipelines [27, 28, 30]. Usually
at least two critical components are needed: (1) collecting human preference data, and (2) modifying pretrained
model weights to better align with these preferences. Some pipelines involve more complexity (e.g., RLHF trains a
reward model on the human preference data and uses it for PPO-based model optimization). Such approaches face
substantial scalability challenges: collecting human preference data is costly and time-intensive, and as model sizes
increase, the computational requirements for fine-tuning are likely to become prohibitive.

A prospective way to bypass the need for human preference data is to exploit knowledge already contained in the
pretrained model weights. This idea is motivated by evidence suggesting that alignment merely reveals knowledge
and capabilities acquired during pretraining [23, 40]. This notion has led to a growing body of literature achieving
impressive results using signal contained in pretrained models for fine-tuning [12, 31, 32, 36], largely or totally
sidestepping human annotation.

Next, to achieve free alignment, we must additionally obviate the need for fine-tuning. Instead, we propose to
replace it with a form of representation editing that does not require computing gradients or even optimizing a
proxy loss at all. Existing representation editing approaches [19, 37, 41] rely on access to ground truth data, which
does not account for the unique challenges of using only signals from pretrained models. These signals are often
noisier and more limited compared to human-annotated data [4, 5, 17, 33], necessitating a more tailored approach.

This work puts together these two pieces to explore the feasibility of free self-alignment. We align pretrained LMs
to human preferences using only the knowledge from the model itself, without additional training or fine-tuning.
We introduce ALIGNEZ, a novel approach designed for this setting. Using the pretrained model’s own generated
preference pairs, ALIGNEZ identifies the subspaces within the model’s embedding spaces that correspond to
helpful and non-helpful responses. During inference, we surgically modify the model’s embeddings by boosting the
components from the helpful subspaces and neutralizing those from the non-helpful ones.

With this nearly cost-free procedure, we effectively narrow the performance gap between pretrained and aligned
models by 31.6% across three model architectures and six datasets. Additionally, we explore the potential of
ALIGNEZ to expedite more expensive alignment processes. Our experimental results demonstrate that ALIGNEZ
improves upon models trained using DPO [28] with only a small subset of ground-truth preference data. In summary,
our contributions include:
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Figure 1: ALIGNEZ identifies helpful and harmful subspaces for alignment (left)—using only self-generated data.
These enable modifying representations during inference (right).

1. We introduce ALIGNEZ, a nearly cost-free approach that leverages preference data generated by the pretrained
LM to modify its embeddings, aligning outputs to human preferences.

2. Our experiments show that ALIGNEZ significantly narrows the gap between the base model and its counterparts
aligned with traditional expensive methods by 31.6% across three model architectures and six datasets.

3. We demonstrate that ALIGNEZ can expedite more expensive methods like DPO by improving models trained
with DPO using only a small subset of ground truth preference data, by 2.2% on average.

4. We demonstrate a simple method to possibly predict conditions when free self-alignment using ALIGNEZ is
possible, as a function of the quality of self-generated preference pairs.

Our work suggests that models may be effectively steered, without additional training or supervision.
Using the strategies we have developed, we envision the possibility of new techniques that go far beyond
alignment as it exists today, tackling such areas as fine-grained and real-time personalization, that are
currently beyond the reach of existing methods.

2 Related Work
Our work tackles alignment and sits at the intersection of self-generated synthetic data and efficient model editing.
We give a (necessarily) compressed introduction to these areas.

LM Alignment. The standard approach to aligning LMs with human values and preferences relies on human-
annotated preference data. This data is used either to (i) train a reward function and subsequently fine-tune the LM
to maximize this reward using reinforcement learning objectives, as in methods like RLHF [7, 27], or (ii) optimize
a proxy loss to maximize the margin between preferred and not preferred outputs, as in methods like DPO [28].
While these methods achieve remarkable performance, they are challenging to implement due to their complex
pipelines, the high cost of computing resources, and the limited scalability of acquiring human-preference data.

Self-Improvement. The difficulty of obtaining human-annotated data has led to significant efforts to bypass
this requirement. Methods such as those proposed by [26, 32, 36] use manually crafted seed prompts to generate
high-quality synthetic datasets from pretrained LMs, which are then used for fine-tuning or training reward models.
[13] uses retrieval-augmented generation to remove reliance on manually designed prompts. Another approach,
[20], leverages instruction-tuned models to assist in generating synthetic datasets. The work most similar to our
approach is [12], which emphasizes maximizing the use of knowledge from the pretrained model being aligned. Our
work takes this further by exploring whether self-alignment can be made even more cost-effective by replacing
fine-tuning with representation editing, dramatically accelerating the alignment process.

Representation Editing. A parallel line of work seeks to modify model behavior without fine-tuning—doing so
by solely editing the model’s representations. For vision-language models like CLIP, [2] and [8] show that removing
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Figure 2: Generating (noisy) preference pairs. First, we prompt pretrained models to provide their insight on the
characteristics of helpful and non-helpful responses (top). Then, we ask the model to generate responses based on
these characteristics (bottom).

spurious or unwanted concept subspaces from embeddings boosts model accuracy on rare class predictions.
[22] shows that doing so in LLM architectures reduces gender bias in generated sentences without degrading
model performance in other tasks. [14, 19, 41] demonstrate that modifying embeddings during inference to steer
them towards certain traits (e.g., honesty, truthfulness, sentiment) can effectively enhance these traits in the
generated outputs. Similarly, [37] learns the appropriate embedding modification, acting as a form of fine-tuning.
These methods assume access to ground-truth preference datasets. Our work differentiates itself by designing an
intervention technique that can handle the noisier signal from synthetic data generated by LMs.

3 ALIGNEZ: (Almost) Free Alignment of Language Models
We are ready to describe the ALIGNEZ algorithm. First, we query a base pretrained LM to generate its own
preference data (Figure 2). Our intuition is that, while noisy, base models have learned, from pretraining data,
sufficient signal to aid in alignment. Using this self-generated data, the identify the subspaces in the LM’s embedding
spaces that correspond to helpful and harmful directions for alignment. During inference, we modify the LM
embeddings using these identified subspaces, steering the model to generate outputs that better align with human
preferences (Figure 1).

First, we describe the self-generated preference data extraction pipeline in Section 3.1. Next, we explain how
ALIGNEZ identifies helpful and non-helpful subspaces in Section 3.2. Finally, we detail the embedding editing
operation in Section 3.3 and the layer selection procedure for intervention in Section 3.4.

3.1 Self-generated Preference Data
First, we extract the human preference signal from the base LLM by querying it to generate its own preference
data. Given a dataset D of N queries, for each query qi, we first ask the base LM (denoted as ω) to describe
characteristics of answers from a helpful agent (chelpi ) and a malicious agent (charmi ). Next, we pair each query
with its corresponding characteristics: (chelpi , qi) and (charmi , qi). We then prompt the LM to generate responses
conditioned on these characteristics, resulting in self-generated preference pairs for each query, denoted as
(phelpi , pharmi ). By applying this procedure to all N samples in the dataset, we obtain self-generated preference data
pairs Phelp and Pharm. Note that we do not perform any prompt tuning, instead relying on a fixed set of prompt
templates. This process is illustrated in Figure 2, with prompt details provided in the Appendix.

Critically, we note that the base models for generating the preference data are not aligned or instruction-tuned.
Consequently, the resulting preference pairs may not always align with the conditioning characteristics, introducing
noise into the self-preference data. To address this challenge, we tailor the embedding intervention in ALIGNEZ to
accommodate this condition.
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Algorithm 1 ALIGNEZ harmful and helpful subspaces identification
1: Parameters: base pretrained LM ω with L layers, self-generated preference pairs Phelp, Pharm

2: for l ∈ L do
3: for phelpi ∈ Phelp do
4: Get representation at layer l: Φhelp

i,l ← phelpi

5: end for
6: Stack embedding matrix Hhelp

l

7: Identify θhelpl with Equation 1
8: for pharmi ∈ Pharm do
9: Get representation at layer l: Φharm

i,l ← pharmi

10: end for
11: Stack embedding matrix Hharm

l

12: Identify θharml with Equation 2
13: end for
14: Returns: Helpful and harmful subspaces θhelpl , θharml

3.2 Finding Preference Directions
Next, using the noisy self-generated preference data, we identify the directions in the model embedding space that
correspond with human preferences. These directions, represented as vectors θ ∈ Rd within ω’s latent space, can
either (i) align with the helpful preferences Phelp, facilitating alignment of the model’s generated sentences, or
(ii) align with the harmful preferences Pharm, leading to adverse effects on alignment [2] [10]. We denote these
directions as θhelp and θharm, respectively. We explore several ways to identify them.

SVD-Based Identification. Our first approach for identifying these directions involves using singular value
decomposition (SVD) on the preference data embeddings. We extract the first eigenvector θ. Intuitively, we view θ
as the direction that best captures the underlying concepts. Let Φl represent the function that maps an input sentence
to the LM embedding space at layer l. For each pair (phelpi , pharmi ), we obtain their corresponding representations
Φl(p

help
i ) and Φl(p

harm
i ), which we abbreviate as Φhelp

i,l and Φharm
i,l , respectively. To begin, we construct an

embedding matrix for helpful preferences, denoted as Hhelp
l , using these representations:

Hhelp
l :=

[
Φhelp

i,l

∣∣∣. . .∣∣∣Φhelp
N,l

]T
.

Similarly, we create the harmful preferences embedding matrix Hharm
l . Then, we proceed to identify the helpful

direction as follows:

Hhelp
l = UΣV

θhelpl := V0,∗. (1)

Here, U and V represent the left and right unitary matrices produced by running SVD, respectively, and Σ is the
diagonal matrix of singular values. We define θhelpl as the first row of V, corresponding to the first eigenvector of
Hhelp

l . The harmful direction θharml is defined similarly.

CCS-Based Identification [6]. Another approach for identifying these directions is by finding a hyperplane in
the latent space that separates helpful data embeddings from harmful ones. Typically, this is achieved by training
lightweight probes θl that maps Φhelp

i,l and Φharm
i,l to their respective classification labels [19]. However, we face

the challenge of avoiding overfitting to the noise inherent in self-generated data, which limits the applicability of
supervised classifier loss in our context. To mitigate this issue, we employ the unsupervised Contrast-Consistent
Search (CCS) loss LCCS proposed in [6]. Adapting the definition from [6] to our notations, LCCS can be expressed
as:

Lconsistency := [θl(Φ
help
i,l )− (1− θl(Φ

harm
i,l ))]2

Lconfidence := min{θl(Φhelp
i,l ), θl(Φ

harm
i,l )}

LCCS := E [Lconsistency + Lconfidence]. (2)
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Figure 3: ALIGNEZ Relative Improvement%. The y-axis shows the Relative Improvement%: how much
ALIGNEZ enhances the base model’s performance compared to an aligned version. Values are recorded across six
datasets (x-axis). A value of 100% means ALIGNEZ improves the base model to the same extent as the aligned
version, while 0% means ALIGNEZ performs the same as the base model. Performance is recorded for three model
families: Mistral (orange), Llama2 (green), and Llama3 (blue). We observe substantial improvements in the base
models, resulting in a narrower performance gap between the base models and the aligned versions.

Training θl with the LCCS objective aims to find a separating hyperplane without fitting any labels withLconsistency

and concurrently promoting maximum separation with Lconfidence. Unlike the SVD approach, the hyperplane
identified by this method can be used as either θharml or θhelpl , depending on which cluster it maps to class ‘1’.
Specifically, we assign θl as θharml if it maps the majority of samples in Hharm

l to class 1.

Hybrid Identification. After exploring both methods, we find that the best results come from combining the
two approaches. Specifically, we use SVD to identify θhelpl and CCS to determine θharml . This combined approach
leverages the strengths of both techniques: SVD’s ability to capture the primary direction of helpful embeddings
and CCS’s effectiveness in identifying the hyperplane that best separates harmful embeddings from helpful ones.
We describe ALIGNEZ subspace identification in Algorithm 1

3.3 Alignment with Embedding Editing.

With the harmful and helpful subspaces θharml and θhelpl identified, we proceed to modify the LM embeddings
during inference. Given xl as the output of the MLP of layer l, the ALIGNEZ editing process proceeds as follows:

x̂l ← xl −
⟨xl, θ

harm
l ⟩

⟨θharml , θharml ⟩
θharml and x̂l ← x̂l +

⟨x̂l, θ
help
l ⟩

⟨θhelpl , θhelpl ⟩
θhelpl .

In the first step, we use vector rejection to remove the influence of θharml from xl. In the second step, we adjust the
embedding by steering it towards the helpful direction θhelpl . We perform the edit at every generation time-step. We
illustrate ALIGNEZ’s representation editing step in Figure 1.

3.4 Selecting Layers for Intervention.
The last piece of the puzzle is determining which layers of the LM to apply our embedding editing to. Intuitively,
we want to intervene in the layers where the embeddings of Xharm and Xhelp are most separable, maximizing the
effectiveness of ALIGNEZ. To accomplish this, we select the layers for intervention by identifying the subset of
layers with the lowest average LCCS loss. This ensures that our alignment interventions are targeted at the most
impactful layers of the model. We provide the pseudocode for layer selection in the Appendix.
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4 Experiments
We evaluate the following claims about ALIGNEZ.

• Reduces alignment gap (Section 4.1). ALIGNEZ significantly reduces the performance gap between the base
model and aligned model without any additional fine-tuning and access to ground-truth preference data.

• Expedites alignment (Section 4.2). ALIGNEZ expedites DPO alignment by improving models that have been
DPOed on only a small subset of ground-truth preference data.

• Compatible with prompting techniques (Section 4.3). ALIGNEZ is compatible with and can be used in
combination with prompt engineering-based alignment methods [23] (Section 4.3).

• Predicts when self-alignment is possible? (Section 4.4). Self-generated data provides a signal about the model’s
ability to self-align with ALIGNEZ.

Metrics. We follow the most popular standard for automatic alignment evaluation, using GPT-4 as a judge to
compare a pair of responses [39] and calculate the win rate (Win %) and lose rate (Lose %). To ensure a more
nuanced and unbiased evaluation, we employ the multi-aspect evaluation technique proposed in [23]. Rather than
evaluating the overall quality of the generated text, we ask GPT-4 to assess it across five aspects: Engagement
(E), Helpfulness (H), Factuality (F), Depth (D), and Clarity (C). We use the same prompt template as [23] and
measure the following metrics:

1. Net Win% = Win% − Lose%: A model that produces meaningful improvement over the base model will
exhibit a higher win rate than lose rate, resulting in a positive net win percentage.

2. Relative Improvement%.
Net Win ours− base

Net Win aligned− base
× 100.

This metric evaluates how much ALIGNEZ improves alignment of the base pretrained model, relative to the
aligned model. A value of 0% means ALIGNEZ offers no improvement over the base model, while 100% means
ALIGNEZ matches the performance of the aligned model. Positive percentages between 0% and 100% indicate
that ALIGNEZ narrows the performance gap between the base and aligned models, and a negative percentage
indicates a performance decline from the base model. Excitingly, we additionally sometimes observe AlignEZ
performance beyond the aligned model.

Datasets. To evaluate ALIGNEZ’s generalization capability across diverse tasks and topics while keeping evalua-
tion affordable, we use the helpfulness slice of the just-eval-instruct dataset [23]. This dataset is a diverse
collection of queries created by sampling and merging several datasets. Specifically, we use the helpfulness slice,
which combines (1) AlpacaEval [21] (including helpful-base, koala, vicuna, open-assistant
(oasst), and self-instruct), and (2) MT-Bench [39]. We report ALIGNEZ’s performance on these indi-
vidual slices.

Baselines. We compare ALIGNEZ against several base models: (1) Mistral-7B-v0.1 [16], (2) Llama-2-7B
[34], and (3) Llama3-8B [3]. As an upper bound, we also compare these base models to their aligned versions. For
Llama2 and Llama3, we use Llama-2-7b-Chat and Llama-3-8B-Instruct, which are RLHF versions
of the base models [1, 34]. For Mistral, we use Mistral-7B-Instruct-v0.1, a version of the base model
fine-tuned with instruction tuning datasets [16]. We report results using the Mistral instruction-tuned model because
our experiments show it outperforms the open-source Mistral DPO [35] on our evaluation datasets.

While we do not expect ALIGNEZ to consistently outperform the aligned models, we anticipate a positive Relative
Improvement% metric. This would indicate that ALIGNEZ effectively brings the base model’s performance closer
to that of the aligned model without incurring additional costs.

4.1 Reducing Alignment Gap
First, we assess how effectively ALIGNEZ brings the performance of the base pretrained model closer to that of its
aligned version.

6



% Net Win% (↑)
E H F D C Avg.

1% 2.1 4.7 2.4 3.6 2.0 3.0
5% 0.0 4.6 2.1 2.3 3.5 2.4
10% 2.9 3.1 1.0 2.0 3.0 2.4
25% 0.0 0.5 2.8 -0.7 2.1 0.9

Table 1: ALIGNEZ improves DPO models
trained on a small subset of the ground-truth pref-
erence dataset. The column % is the percentage
of data used for DPO training.

Figure 4: ALIGNEZ improvement over DPO models
diminishes as we increase the training size.

Setup. All experiments use frozen LLM weights, with no additional training of these weights. We only train
lightweight probes to identify θharml using LCCS (see Section 3). Details on the hyperparameters for probe training
are provided in the Appendix.

Results. Our results are shown in Figure 3. We observe consistent positive Relative Improvement% across
datasets and model architectures. This validates our claim that ALIGNEZ reduces the alignment gap between
base models and their aligned versions, occasionally even surpassing the performance of the aligned models.
Remarkably, these improvements are achieved without access to ground truth preference data or any additional
fine-tuning. In cases where ALIGNEZ does not yield improvements, such as with the Llama2 model on the vicuna
dataset, we investigate the essential conditions for improvement in Section 4.4.

Figure 3 also reveals an interesting insight: ALIGNEZ shows more significant improvements in aspects like
Helpfulness and Factuality compared to Engagement and Depth. This suggests that ALIGNEZ primarily enhances
utility-related aspects of the base model, while its impact on stylistic aspects is comparatively limited. This indicates
potential areas for further improvement in the self-generated data process. For example, generating preference data
based on multiple aspects rather than a single differentiating category (e.g., helpful vs. non-helpful, as shown in
Figure 2) might lead to improved overall performance.

4.2 Expediting Alignment
Next, we evaluate ALIGNEZ’s ability to expedite more expensive alignment techniques like DPO. Specifically,
we test whether ALIGNEZ can improve models trained with DPO using only a smaller subset of ground-truth
preference data.

Setup. We perform DPO fine-tuning on the Mistral-7b-base model using the UltraFeedback-binarized
dataset [9, 35] and do evaluation on the test set. We provide the complete DPO training parameters in the Appendix.

Results. Our results are shown in Table 1. ALIGNEZ enhances the alignment of models tuned using DPO on
a small subset of ground truth preference data, indicated by the positive Net Win%. This confirms our claim
that ALIGNEZ expedites DPO alignment. In Figure 4, we observe that the improvement provided by ALIGNEZ
diminishes as the percentage of training data increases, which is expected since the benefit from DPO itself grows
with more training data. This result highlights ALIGNEZ’s potential to provide additional alignment gains when
only a limited amount of ground-truth preference data is available.

4.3 Compatibility with Prompting Techniques
We also investigate the adaptability of ALIGNEZ when combined with other cost-effective alignment techniques,
such as prompting [23].
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Dataset Model Net Win% (↑)
E H F D C Avg.

Vicuna Llama2-base 10 3 3 7 10 6.6
Koala Llama3-base 8 12 1.3 5.3 6.7 6.6

Table 2: Compatibility with prompting-based methods.

Figure 5: Net win% (blue, top row) correlation with self-generated data quality (orange, bottom row). Left to right:
Mistral, Llama2, Llama3.

Setup. We use the URIAL prompt proposed in [23] as a prefix for every query and record the performance both
with and without ALIGNEZ applied. This prompt consists of manually crafted set of in-context learning examples
designed to mimic the style of high-performing models such as ChatGPT and other advanced aligned LLMs.

Results. Table 2 demonstrates that ALIGNEZ enhances performance beyond what is achieved by using the
prompting technique alone, as indicated by the positive Net Win%. This confirms our claim that ALIGNEZ is
compatible with prompting techniques and shows its versatility to be used in combination with other cost-effective
alignment methods.

4.4 When is Self-Alignment Possible?
We study whether the quality of self-generated data can predict if using ALIGNEZ leads to model improvement. To
assess the data quality, we measure the generalization ability of classifiers trained on the self-generated data.

Setup. We train logistic regression classifiers on the embeddings of the self-generated data to predict the labels
associated with the data and record the test performance. Additionally, we use an off-the-shelf sentence embedder
to remove the influence of model embedding quality. The reported values are averaged across five independent runs.

Results. Figure 5 shows that the average Net Win% achieved by ALIGNEZ generally correlates with the adjusted
classifier accuracy. This supports our claim that self-generated data provides a signal about the model’s ability
to self-align. This correlation is particularly strong for the Mistral model. For the Llama3 and Llama2 models,
the trend is mostly consistent, with some exceptions being the koala dataset on Llama3 (leftmost point) and the
self-instruct dataset on Llama2 (rightmost point).

Extending this approach may offer a quick and effective method for selecting data suitable for alignment. This is
crucial, as extensive research has shown that the composition and quality of training data are critical to the resulting
model’s performance [15, 18, 38].
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5 Discussion
Limitations and Future Work. ALIGNEZ presents several limitations and avenues for future exploration.
First, we perform embedding editing at every generation time step. However, it remains uncertain whether
selecting specific time steps for intervention could yield further improvements. Second, while we see promising
indications in Section 4.4 that the quality of self-generated data correlates with ALIGNEZ improvement, refining
this characterization by developing a specialized metric for predicting the model’s ability to self-align would be
useful. Similarly useful would be to conduct an analysis to gauge the steerability of the base model based on
the quality of its pretrained model embeddings. Additionally, our technique needs to be adapted for red-teaming
scenarios, where the goal is to have the model refuse to answer certain questions instead of providing information.

Conclusion. We introduce ALIGNEZ, a novel approach for aligning pretrained LMs with human preferences
without access to human-annotated data and fine-tuning. By leveraging the inherent knowledge within pretrained
models, ALIGNEZ modifies model embeddings during inference to produce outputs that better align with human
preferences. We empirically show that ALIGNEZ consistently enhances the alignment of the base model across
multiple evaluation aspects, occasionally surpassing the performance of their aligned counterparts. Additionally,
we show that ALIGNEZ can expedite more costly alignment techniques like DPO.

This work takes an initial step toward achieving truly cost-free alignment and paves the way for the development
of techniques in exciting new domains like real-time dynamic alignment and fast model personalization – areas
currently beyond the reach of standard alignment methods.
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A Appendix / supplemental material

A.1 Glossary
Table 3 shows glossary of terms used in this paper.

A.2 DPO Training details
Dataset DPO experiment were trained on binarized UltraFeedback dataset [9, 35].

Computing resources Experiment training on 1%, 5%, 10% and 25% of the dataset were run on an Amazon
EC2 Instances with eight Tesla V100-SXM2-16GB GPUs.

Hyperparameters The hyperparameters we used consist of 1 training epoch, a gradient accumulation step of 1, a
learning rate of 5e− 5, a max grad norm of 0.3, a warmup ratio of 0.1 (based on [11]), a precision of bfloat16, a
memory saving quantize flag of "bnb.nf4", a learning rate scheduler type of cosine, and an optimizer of AdamW
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Symbol Definition

D Dataset of queries
qi Sample query
ω Language Model
l Language model layer index
chelpi Characteristic of helpful answer
chelpi Characteristic of harmful/unhelpful answer
phelpi Helpful preference sample
Phelp Self generated helpful preference data
Pharm Self generated harmful/unpreferred preference data
θhelp Subspace of helpful preference samples
θharm Subspace of harmful/unpreferred preference samples
Φhelp

i,l Embedding of phelpi in layer l of ω, abbreviation of Φl(p
help
i )

Φharm
i,l Embedding of pharmi in layer l of ω, abbreviation of Φl(p

harm
i )

Hhelp
l Embedding matrix stacked from Φhelp

i,l

Hharm
l Embedding matrix stacked from Φharm

i,l

V0,∗ First row of the right unitary matrix
xl output of MLP at layer l
x̂l MLP output after ALIGNEZ embedding edit

Table 3: Glossary of variables and symbols used in this paper.

[24] (based on [29]). We applied PEFT [25] method to model training with hyperparameters of a r of 256, a α of
128, a dropout of 0.05 and a task type of causal language modeling (based on [11, 29]). A batch size of 16 is used
to train the 1%, 5%, 10% and 25% data experiment. A batch size of 20 is used to train the full data experiment.

A.3 CCS Probe training details
We train a 1 layer linear layer with dimension of the LM embedding using the following hyperparameters: epoch =
1000, lr=1e-3, batch size=number of preference pairs, weight decay=0.01. We repeat training 10 times and take the
probe with the lowest LCCS . Training is conducted in the Amazon EC2 instances with 8 Testa V100s.

A.4 ALIGNEZ Net Win and Relative Improvement Table
Table 4 shows the detailed numbers for the experiment in Section 4.1.

A.5 Layer Selection Pseudocode
Below is the pseudocode for layer selection. We select layers that have low average LCCS , by heuristically select
the layers before the running mean increases significantly.

def s e l e c t _ l a y e r s ( l a y e r s _ l o s s ) :
s o r t e d _ i d x = np . a r g s o r t ( l a y e r s _ l o s s )
l a y e r s _ l o s s _ s o r t e d = l a y e r s _ l o s s [ s o r t e d _ i d x ]
running_mean = [ ]
f o r i in range ( 1 , l e n ( s o r t e d _ i d x ) ) :

l o s s e s = l a y e r s _ l o s s _ s o r t e d [ s o r t e d _ i d x [ : i ] ]
running_mean . append ( np . mean ( l o s s e s ) )

d i f f s = np . d i f f ( np . a r r a y ( running_mean ) )
s t o p _ e d i t _ i d x = np . argmax ( d i f f s ) . f l a t t e n ( ) [ 0 ]
l a y e r s _ t o _ e d i t = l a y e r s _ l o s s _ s o r t e d [ : s t o p _ e d i t _ i d x ]
re turn l a y e r s _ t o _ e d i t
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Dataset Model
Net Win% (↑) Relative Improvement% (↑)

E H F D C Avg. E H F D C Avg.

helpful-base

Mistral-7B + Ours 3 6 -2 12 6 5
-inf -inf - 86 -inf -inf

Mistral-7B-instruct 0 -16 -17 14 -12 -6

Llama2-7B + Ours 4 7 9 3 -3 4
13 26 112.5 9.4 -33.3 19

Llama2-7B-chat 31 27 8 32 9 21

Llama3-8B + Ours 7 1 -1 4 3 2.8
150 -inf - -inf 100 -inf

Llama3-8B-instruct 5 -12 -1 -6 3 -2

koala

Mistral-7B + Ours 1.3 12 4 8 1.3 5.3
43.3 120 133.3 40 -inf 88.3

Mistral-7B-instruct 3 10 3 20 -7 6

Llama2-7B + Ours 4 7 -2.6 9 2.6 4
9.3 17 -17.3 22 8.7 11.8

Llama2-7B-chat 43 41 15 41 30 34

Llama3-8B + Ours -7 5 4 4 -5 0.3
-50 31.2 200 33.3 -30 2.5

Llama3-8B-instruct 14 16 2 12 17 12

vicuna

Mistral-7B + Ours 7 -3 -3 10 -3 1.3
233.3 -30 -100 50 - 21.7

Mistral-7B-instruct 3 10 3 20 -7 6

Llama2-7B + Ours 0 0 7 -14 3.5 -0.7
0 0 70 -42 15 -2.4

Llama2-7B-chat 37 43 10 33 23 29

Llama3-8B + Ours -7 7 0 0 3 0.7
-41 -inf - 0 30 11.7

Llama3-8B-instruct 17 0 0 3 10 6

oasst

Mistral-7B + Ours -2 -4 -2 -5 -2 -3
-200 -133 - -100 - -

Mistral-7B-instruct 1 3 -5 5 -9 -1

Llama2-7B + Ours 3 7 -3 7 7 4.2
7.5 15.6 -50 13.5 70 14

Llama2-7B-chat 40 45 6 52 10 30

Llama3-8B + Ours 7 8 -1 4 7 5
87.5 50 -11 28.6 46.7 40.3

Llama3-8B-instruct 8 16 9 14 15 12.4

self-instruct

Mistral-7B + Ours 1 1 2 2 1 1
33.3 11.1 66.7 50 20 20

Mistral-7B-instruct 3 9 3 4 5 5

Llama2-7B + Ours 2.7 9 2.7 7.2 8 6
15 45 39 27 40 33.3

Llama2-7B-chat 18 20 7 27 20 18

Llama3-8B + Ours -2 7 -3 4 0 1.2
-14 44 -150 33.3 0 10

Llama3-8B-instruct 14 16 2 12 17 12

MT-Bench

Mistral-7B + Ours 3 5 0 1 0 2
30 500 -inf 7.7 0 40

Mistral-7B-instruct 10 1 -5 13 6 5

Llama2-7B + Ours -2.5 9 -1.2 6 0 2.3
-12.5 60 -24 40 0 21

Llama2-7B-chat 20 15 5 15 1 11

Llama3-8B + Ours 6 5 2.5 -4 -4 1.3
95 125 -inf -63 -400 37

Llama3-8B-instruct 6.3 4 0 6.3 1 3.5

Table 4: Main results table. In cases when ALIGNEZ produces positive improvement and instruct models produce
zero or negative, we mark Relative Improvement% as -inf. In cases where both methods produce zero or negative
improvement, we mark it as -.
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A.6 Prompt Template
Following is the prompt template used to query the base LM to generate preference samples:

Generating helpful samples characteristics: [QUERY]. You are a helpful assistant. Your
answer to this query should:

Generating harmful/unpreferred sample characteristics: [QUERY]. Pretend you are a malicious
and useless assistant. Your answer to this query should:

A.7 Broader Impacts
Our work inherits the societal impacts associated with language models. On one hand, there’s the risk of these
models generating responses to potentially harmful queries, particularly in redteaming scenarios—an issue we
acknowledge and address in our main body’s limitation section. Conversely, our approach offers a potential positive
societal impact by enabling a nearly cost-free alignment of language models. This capability could facilitate easier
and faster alignment processes, leading to broader access to well-aligned models and ultimately contributing to
positive societal outcomes.
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